
YEAR 1 - BOOK 2

MINISTRY OF EDUCATION

ROBOTICS

TEACHER MANUAL

For Senior High Schools

MINISTRY OF EDUCATION

REPUBLIC OF GHANA

Robotics
For Senior High Schools

Teacher Manual
Year One - Book Two

ROBOTICS TEACHER MANUAL
Enquiries and comments on this manual should be addressed to:
The Director-General
National Council for Curriculum and Assessment (NaCCA)
Ministry of Education
P.O. Box CT PMB 77
Cantonments Accra

Telephone: 0302909071, 0302909862
Email: info@nacca.gov.gh
website: www.nacca.gov.gh

©2024 Ministry of Education

This publication is not for sale. All rights reserved. No part of this publication
may be reproduced without prior written permission from the Ministry of
Education, Ghana.

iii

Contents

CONTENTS

INTRODUCTION	 1

Learner-Centred Curriculum	 1

Promoting Ghanaian Values	 1

Integrating 21st Century Skills and Competencies	 1

Balanced Approach to Assessment - not just Final External Examinations	 1

An Inclusive and Responsive Curriculum	 2

Social and Emotional Learning 	 2

Philosophy and vision for each subject	 2

SUMMARY SCOPE AND SEQUENCE	 3

SECTION 5: ROBOT DESIGN SOFTWARE	 4

Strand: Robot Design Methodologies	 4
Sub-Strand: Tools and Applications for Robot Design	 4

Theme or Focal Area: Exploring Tools & Apps for Robot Design:
Modelling, Programming and Simulation	 6
Theme or Focal Area: Virtual Robot Design and Simulation:
Exploring Mechanics and Testing	 12
Theme or Focal Area: 3D Printing and CAD Modelling for Robotic Systems	 18
Theme or Focal Area: 3D Printing with G-Codes:
From CAD Modelling to Physical Prototypes	 22

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING	 27

Strand: Robot Construction & Programming	 27
Sub-Strand: Higher Order Design Thinking	 27

Theme or Focal Area: Higher order Design Thinking:
Flowchart Diagrams for Algorithm Implementation	 29
Theme or Focal Area: Algorithmic Problem-Solving in Robotics:
Pseudocodes and Flowchart Diagrams	 32

SECTION 7: ROBOT CONSTRUCTION	 35

Strand: Robot Construction & Programming	 35
Sub-Strand: Robot Construction	 35

Theme or Focal Area: Robot Construction - Designing Stable Structures
and Understanding Mass and Centre of Gravity	 37
Theme or Focal Area: Building and Testing Robot Structures: Ensuring Stability
and Force Resistance	 41
Theme or Focal Area: Creating Robots with Basic Mechanics - Exploring Gears,
Vehicles and Moving Mechanisms	 45

iv

Contents

SECTION 8: PROGRAMMING ROBOTS	 60

Strand: Robot Construction & Programming	 60
Sub-Strand: Programming Robots	 60

Theme or Focal Area: Introduction to Programming with Block-Based Coding	 62
Theme or Focal Area: Creating Computer Programmes from Flowcharts	 66
Theme or Focal Area: Fundamentals of Control Principles in Automation
and Robotics - Feedback and Non-Feedback Loop Systems	 79

ACKNOWLEDGEMENTS 	 87

1

Introduction

INTRODUCTION

The National Council for Curriculum and Assessment (NaCCA) has developed a new Senior High
School (SHS), Senior High Technical School (SHTS) and Science, Technology, Engineering and
Mathematics (STEM) Curriculum. It aims to ensure that all learners achieve their potential by
equipping them with 21st Century skills, competencies, character qualities and shared Ghanaian
values. This will prepare learners to live a responsible adult life, further their education and enter the
world of work.

This is the first time that Ghana has developed an SHS Curriculum which focuses on national values,
attempting to educate a generation of Ghanaian youth who are proud of our country and can contribute
effectively to its development.

This Book Two of the Teacher Manual for Robotics covers all aspects of the content, pedagogy,
teaching and learning resources and assessment required to effectively teach Year One of the new
curriculum. It contains information for the second 12 weeks of Year One. Teachers are therefore to use
this Teacher Manual to develop their weekly Learning Plans as required by Ghana Education Service.

Some of the key features of the new curriculum are set out below.

Learner-Centred Curriculum
The SHS, SHTS, and STEM curriculum places the learner at the center of teaching and learning by
building on their existing life experiences, knowledge and understanding. Learners are actively
involved in the knowledge-creation process, with the teacher acting as a facilitator. This involves
using interactive and practical teaching and learning methods, as well as the learner’s environment
to make learning exciting and relatable. As an example, the new curriculum focuses on Ghanaian
culture, Ghanaian history, and Ghanaian geography so that learners first understand their home and
surroundings before extending their knowledge globally.

Promoting Ghanaian Values
Shared Ghanaian values have been integrated into the curriculum to ensure that all young people
understand what it means to be a responsible Ghanaian citizen. These values include truth, integrity,
diversity, equity, self-directed learning, self-confidence, adaptability and resourcefulness, leadership
and responsible citizenship.

Integrating 21st Century Skills and Competencies
The SHS, SHTS, and STEM curriculum integrates 21st Century skills and competencies. These are:

•	 Foundational Knowledge: Literacy, Numeracy, Scientific Literacy, Information Communication
and Digital Literacy, Financial Literacy and Entrepreneurship, Cultural Identity, Civic Literacy
and Global Citizenship

•	 Competencies: Critical Thinking and Problem Solving, Innovation and Creativity, Collaboration
and Communication

•	 Character Qualities: Discipline and Integrity, Self-Directed Learning, Self-Confidence,
Adaptability and Resourcefulness, Leadership and Responsible Citizenship

Balanced Approach to Assessment - not just Final External Examinations
The SHS, SHTS, and STEM curriculum promotes a balanced approach to assessment. It encourages
varied and differentiated assessments such as project work, practical demonstration, performance
assessment, skills-based assessment, class exercises, portfolios as well as end-of-term examinations
and final external assessment examinations. Two levels of assessment are used. These are:

2

Introduction

•	 Internal Assessment (30%) – Comprises formative (portfolios, performance and project work)
and summative (end-of-term examinations) which will be recorded in a school-based transcript.

•	 External Assessment (70%) – Comprehensive summative assessment will be conducted by the
West African Examinations Council (WAEC) through the WASSCE. The questions posed by
WAEC will test critical thinking, communication and problem solving as well as knowledge,
understanding and factual recall.

The split of external and internal assessment will remain at 70/30 as is currently the case. However,
there will be far greater transparency and quality assurance of the 30% of marks which are school-
based. This will be achieved through the introduction of a school-based transcript, setting out all
marks which learners achieve from SHS 1 to SHS 3. This transcript will be presented to universities
alongside the WASSCE certificate for tertiary admissions.

An Inclusive and Responsive Curriculum
The SHS, SHTS, and STEM curriculum ensures no learner is left behind, and this is achieved through
the following:

·	 Addressing the needs of all learners, including those requiring additional support or with special
needs. The SHS, SHTS, and STEM curriculum includes learners with disabilities by adapting
teaching and learning materials into accessible formats through technology and other measures
to meet the needs of learners with disabilities.

·	 Incorporating strategies and measures, such as differentiation and adaptative pedagogies
ensuring equitable access to resources and opportunities for all learners.

·	 Challenging traditional gender, cultural, or social stereotypes and encouraging all learners to
achieve their true potential.

·	 Making provision for the needs of gifted and talented learners in schools.

Social and Emotional Learning
Social and emotional learning skills have also been integrated into the curriculum to help learners to
develop and acquire skills, attitudes, and knowledge essential for understanding and managing their
emotions, building healthy relationships and making responsible decisions.

Philosophy and vision for each subject
Each subject now has its own philosophy and vision, which sets out why the subject is being taught
and how it will contribute to national development. The Philosophy and Vision for Robotics is:

Philosophy: The next generation of creators and technology developers can be empowered through
observation, curiosity and exposure to related robotic concepts and opportunities that leverage
practical activities in a learner-centered environment leading to global and local (“glocal”) relevance.

Vision: A skilled learner armed with 21st century skills and competencies in critical thinking,
designing, and development of robot-based solutions for increasingly complex societal problems.

3

Summary Scope and Sequence

SUMMARY SCOPE AND SEQUENCE

S/N STRAND SUB-STRAND YEAR 1 YEAR 2 YEAR 3
 CS LO LI CS LO LI CS LO LI

1. Principles
of Robotic
Systems

Robots and Society 2 2 3 2 2 4 2 2 4
Robot Control
Principles 2 2 4 2 2 4 3 3 5

Sensors and Actuators 2 2 4 2 2 4 1 1 2
2. Robot Design

Methodologies
Digital and Analogue
System Design 2 2 4 2 2 3 1 1 2

Tools and Apps for
Robot Design 1 1 2 1 1 1 - - -

3. Robot
Construction
and
Programming

Higher Order Design
Thinking 1 1 2 1 1 1 - - -

Robot Construction 2 2 3 2 2 2 1 1 1
Programming Robot - - - 2 2 4 - - -

Total 12 12 22 14 14 23 8 8 14

Overall Totals (SHS 1 – 3)

Content Standards 34
Learning Outcomes 34
Learning Indicators 59

4

SECTION 5: ROBOT DESIGN SOFTWARE

SECTION 5: ROBOT DESIGN SOFTWARE

Strand: Robot Design Methodologies
Sub-Strand: Tools and Applications for Robot Design

Learning Outcome: Effectively use virtual platforms and simulation tools to design and test
robots.

Content Standards:
1.	 Demonstrate abilities to use Integrated Development Environments.
2.	 Use of modelling and simulation tools needed for the design and testing of robots.
3.	 Demonstrate Skills in the use and management of 3D printers.

INTRODUCTION AND SECTION SUMMARY
This section will explore essential tools and applications that aid in the design and testing of
robots. Integrated Development Environments (IDEs), modelling and simulation tools are crucial
in developing robotics projects. This section focuses on virtual robot design and simulation to
evaluate robot performance. It introduces learners to 3D printing and Computer-Aided Design (CAD)
modelling for robotic systems. This section aims to learn how to create custom parts for robotic
systems. This exciting session will explore the final steps of the 3D printing process, focusing on
using relevant intermediate tools to prepare CAD-modelled files into G-codes and printing the designs
using a 3D printer.

The weeks covered by the section are:
	 Week 13:Explore features of selected modelling, programming and simulation tools useful for

the design of robots
	 Week 14:Design robots using virtual platforms and use simulation tools and programming

IDEs to test the mechanics of the designed robots.
	 Week 15: Use a CAD tool to model parts of robotic systems.
	 Week 16:Use relevant intermediate tools to prepare modelled files into g-codes and print the

designs using a 3D Printer.

SUMMARY OF PEDAGOGICAL EXEMPLARS
This section uses different teaching strategies to engage learners and equip them with a good
understanding of robot simulation software. Week 13 utilises initiating talk for learning to help
learners discuss their experiences with robot simulation software and their use. Talk for learning
is also employed to help learners explore the features of robot simulation software and discuss and
compare their observations.

In week 14, enquiry-based learning guides learners in exploring virtual platforms such as V-REP
or ROS with a teacher-led demonstration. Learners are asked to create comparison charts to help
improve their critical thinking and research skills. Problem-based learning is also employed, where
learners are given a mini-project and given resources to help them complete the project.

A Guided design challenge is utilised in week 15, where the teacher guides learners in a step-by-step
process of designing a simple gripper attachment that can be integrated with the robot arm model.

5

SECTION 5: ROBOT DESIGN SOFTWARE

Learners are introduced to interactive tutorials which use gamification elements such as points and
badges to motivate them as they learn the basic functionalities of the software.

ASSESSMENT SUMMARY
Following each thematic area in this section, assessments gauge learner learning. These come in two
forms: learning tasks and key assessments. Learning tasks, primarily formative, focus on solidifying
understanding and acquiring new knowledge or skills. Facilitators guide these activities to enhance
the learning process. In contrast, key assessments, typically summative, evaluate learner mastery
after instruction. These are often given as homework or quizzes outside of class. Instructors have
the flexibility to choose the assessment types that best suit their learners and learning objectives.
However, it is advisable that instructors, at least, guide learners to do one of the learning tasks.

6

SECTION 5: ROBOT DESIGN SOFTWARE

Week 13
Learning Indicator: Explore features of selected modelling, programming and simulation tools
useful for the design of robots.

Theme or Focal Area: Exploring Tools & Apps for Robot Design: Modelling,
Programming and Simulation

Introduction
This lesson will explore essential tools and applications that aid in the design and testing of robots.
Integrated Development Environments (IDEs), modelling and simulation tools are crucial in
developing robotics projects. Understanding these tools will enable learners to design, programme
and simulate robotic systems efficiently. It will explore the features and functionalities of selected
tools, providing learners with valuable insights into their applications in robotics.

1.	 Integrated Development Environments (IDEs) for Robotics:
	 Integrated Development Environments (IDEs) are software platforms that provide a

comprehensive set of tools for programming and managing robotic projects. It is a single
software programme that combines all the tools one will need to write, test and debug code.
Imagine it as a one-stop shop for your robot programming needs.

	 The following are some benefits of using IDEs:
a.	 Code editing: Write your code with syntax highlighting (colours for different parts of the

code) and auto-completion (suggestions as you type).
b.	 Compiling and debugging: Easily compile your code (turn it into instructions the robot

understands) and troubleshoot any errors that might arise.
c.	 Simulation and testing: Some IDEs allow you to simulate your robot’s behaviour in a

virtual environment before running it on the real hardware.

	 Some popular IDEs for robotics include:
a.	 Lego Education Spike App: This tool is for writing programmes for the Lego Spike Robot.

The app includes introductory material, lessons, building instructions and a series of coding
experiences that progress from icon- and word-block coding based on Scratch to text-based
coding based on Python.

b.	 EV3 Classroom: This is a tool for writing programmes for LEGO EV3 kits. It uses an
intuitive icon-based environment which connects to the EV3 robot for instructions.

c.	 Arduino IDE: Arduino IDE is widely used in robotics to programme Arduino microcontrollers.
It offers a user-friendly interface for writing, compiling and uploading code to Arduino
microcontroller boards.

d.	 Visual Studio Code (VS Code): VS Code provides an advanced IDE for embedded systems,
including robotics projects. It supports multiple microcontroller platforms, offering rich
code editing and debugging features.

e.	 MATLAB/Simulink: MATLAB is a powerful tool for numerical computing and data
analysis. Simulink, an extension of MATLAB, is widely used for modelling and simulating
robotic systems.

7

SECTION 5: ROBOT DESIGN SOFTWARE

2.	 Modelling and Simulation Tools for Robotics:
	 Modelling and simulation tools are like virtual playgrounds for your robot! They allow you

to create a digital representation (model) of your robot and its environment and simulate its
movements and behaviour before deploying it in the real world. Modelling and Simulation tools
are essential for visualising and testing robotic systems before implementation.

	 The following are some benefits of using them:
a.	 Safer testing: Experiment with different programming approaches without risking damage

to your robot or its surroundings.
b.	 Faster development: Identify and fix errors early in the development process, saving time

and resources.
c.	 Optimise performance: Test different configurations and settings to find the most efficient

way for your robot to operate.
d.	 Visualise robot behaviour: See how your robot will interact with its environment before

building it.

	 Some widely used tools for modelling and simulation in robotics include:
a.	 BrickLink Studio: It is a powerful 3D modelling software specifically designed for creating

virtual LEGO models. It provides an intuitive user interface that makes it easy for users to
navigate and access various tools and features and includes an extensive library of LEGO
parts, elements and colours, allowing users to easily find and select the components they
need to build their models. The library is regularly updated to include the latest LEGO
parts and sets.

b.	 ROS (Robot Operating System): ROS is an open-source framework that provides a
collection of software libraries and tools for developing robotic applications. It supports
simulation, visualisation and communication between robot components. (Fairchild &
Harman 2016)

c.	 Gazebo: Gazebo is a robust 3D robot simulation environment that works seamlessly with
ROS. It allows users to create virtual environments to test and validate robotic algorithms
and interactions. (Open Robotics, 2024)

d.	 Webots: Webots is a professional robot simulation software used to model, simulate
and optimise robotic systems. It offers a user-friendly interface and supports various
robot models.

e.	 Tinkercad: Tinkercad is a software that creates 3D models of robots and then exports them
for 3D printing. It offers a lot of flexibility in robot modelling and simulation.

3.	 Features of Selected Modelling, Programming and Simulation Tools:
	 To explore the selected tools, we will focus on ROS and Gazebo, Tinkercad and The Virtual

Robotics Toolkit and Arduino IDE:
a.	 OS and Gazebo: ROS provides a modular and distributed architecture that facilitates

easy integration of sensors, actuators and other components. Gazebo offers a realistic
simulation environment, allowing users to visualise robots and test their interactions in 3D
virtual worlds.

8

SECTION 5: ROBOT DESIGN SOFTWARE

Fig. 13.1: ROS Simulation

b.	 Tinkercad: Tinkercad is a web-based computer-aided design (CAD) software developed
by Autodesk. It is widely used for creating 3D models, circuits and simulations, making it
a versatile tool for various design and engineering projects.

Fig. 13.2: Tinkercad

9

SECTION 5: ROBOT DESIGN SOFTWARE

c.	 The Virtual Robotics Toolkit: The Virtual Robotics Toolkit is a software platform
designed to provide a simulated environment for learning and practising robotics concepts
without the need for physical hardware.

Fig. 13.3: Virtual Robotics Toolkit

d.	 The Arduino IDE: This IDE contains a text editor for writing code, a text console, a
toolbar with buttons which have common functions and a series of menus. It connects to
the Arduino hardware to upload programmes and communicate with them.

Fig 13.4: Arduino IDE

Learning Tasks

Depending on the available time or resources, administer one or more of the following learning
tasks to help learners reinforce understanding and acquire new knowledge or skills.
1.	 Learners install robot design tools with teacher guidance.
2.	 Learners explore functionalities through online tutorials.
3.	 Learners delve deeper into specific tools (ROS, Tinkercad, Arduino IDE).
4.	 Learners complete a basic task using their chosen tool (simulation or programming).
5.	 Learners share their experiences and observations with the class.

10

SECTION 5: ROBOT DESIGN SOFTWARE

Pedagogical Exemplars
This lesson aims to introduce learners to robot simulation software tools. Consider the following
keynotes when administering the suggested pedagogical approaches in the curriculum:

1.	 Initiating Talk for Learning: In a tiered or scaffolded manner, address the learner groups’
identified needs. You can use a good mixture of the following to address their needs:
a.	 K (Know): Use simple prompts such as “Have you used a software before?” or “Can

you name some software you have used before?” List learner responses on the board and
categorise them broadly (e.g. If Yes, probe OS and software). Ask learners to share specific
examples of design software they have encountered and their functionalities (e.g. Arduino,
ROS). Discuss the level of difficulty they have in learning how to use these softwares.
Have learners brainstorm and categorise different types of robot software based on their
ease of use (e.g. ROS, Gazebo). Discuss the benefits and advantages of each software over
the other.

b.	 (Want to Know): Encourage them to ask questions about robotic software using prompts
such as “How are robots designed?” or “What are simulations?” List these questions and
address some of them briefly, piquing their curiosity for the lesson. Encourage them to ask
more detailed questions about how to install and use the IDE and other software to design
robots. Encourage them to ask questions about the future of robotic design and how the
software can be made easier to understand and use.

c.	 L (Learn): Briefly introduce the concept of robot design and how software is used to
design robots. Introduce the key features of robot software (coding, drag-and-drop,
etc.) and how these features contribute to their functionalities. Delve deeper into the
technological advancements (AI, connectivity) in robot simulation. Briefly discuss the
ethical considerations surrounding the design and simulation of robots.

2.	 Talk for Learning: Similarly, address the identified needs of learners with different readiness,
interests and learning profiles. You can use a mixture of the suggested approaches below:
a.	 Use very simple and clear examples with pictures or videos of robotic software. Examples

could include a snippet of VS Code, a snippet of Gazebo and a video of Arduino IDE.
b.	 Provide ample time for individual thinking before pairing up. Encourage learners to

differentiate features of software that they notice and explain their reasoning in simple terms
during the sharing phase. The facilitator can circulate and offer guidance where needed.

c.	 Show learners the interfaces of IDEs and Simulation software. Give learners a moderate
amount of time for individual thinking. Ask learners to differentiate in a table the differences
between IDEs and Simulation software. The facilitator can ask clarifying questions to
promote deeper discussion within pairs.

d.	 Show learners the output files of IDEs and Simulation software. Provide sufficient time for
individual thinking and analysis. Encourage learners to have a more in-depth discussion
about the functionalities and limitations of each kind of software. The facilitator can ask
probing questions to encourage critical thinking and analysis during the sharing phase.

Key Assessment
Assessment Level 1: What is the main purpose of a robot simulation tool?

Assessment Level 2: Explain why modelling and simulation tools are essential for robotic projects.

Assessment Level 3: Imagine you are designing a robot that sorts recycling materials. Which tool
would be most useful at the beginning of the design process, and why?

Assessment Level 4: Design a flowchart that outlines the steps involved in using an IDE, modelling
tool, and simulation tool together for a basic robot development process.

11

SECTION 5: ROBOT DESIGN SOFTWARE

Conclusion
Integrated Development Environments, Modelling and Simulation tools are essential assets in the
design and testing of robots. Learners have gained valuable insights into their applications and
functionalities by exploring the features of selected tools such as ROS, Gazebo, Virtual Robotics
Kit and Arduino IDE. These tools empower you to create, programme and simulate robotic systems
efficiently, ensuring the successful development and deployment of robotic projects. As you progress
in your robotics journey, mastering these tools will be instrumental in tackling more complex
challenges and building innovative robots.

12

SECTION 5: ROBOT DESIGN SOFTWARE

Week 14
Learning Indicator: Design robots using virtual platforms and use simulation tools and
programming IDEs to test the mechanics of the designed robots.

Theme or Focal Area: Virtual Robot Design and Simulation: Exploring Mechanics and
Testing

Introduction
This exciting session will delve into the world of virtual robot design and simulation. Virtual platforms
and simulations provide a powerful and cost-effective way to design and test robots before physical
implementation. By exploring virtual environments, we can examine the mechanics of designed
robots and perform simulations to evaluate their performance. Let’s discover how virtual tools open
up new possibilities in robotics design and testing.

1.	 Virtual Platforms for Robot Design:
	 Virtual platforms are computer-based environments that allow us to create and interact with

virtual robots. These platforms offer various features, including 3D modelling, physics engines
and simulation capabilities. Some popular virtual platforms for robot design include:

a.	 Bricklink: Bricklink Studio is a Lego-based software and it provides a versatile environment
for creating, visualising and simulating complex robotic systems.

Fig. 14.1: Bricklink Interface (Simulation). (Fileinfo, 2021)

13

SECTION 5: ROBOT DESIGN SOFTWARE

b.	 Tinkercad: Tinkercad by Autodesk offers a user-friendly interface for designing and
simulating robotic systems. It offers 3D design of robotic parts, supports programming
robots with block-based coding and uses Autodesk Fusion for the printing of 3D designs.

Fig. 14.2: Tinkercad Interface (Tinkercad, 2020)

c.	 Virtual Robotics Toolkit: Designed for use with the Lego Mindstorms EV3, the Virtual
Robotics Toolkit is a physics-enabled robotics simulator. The simulator allows users to
drive their own virtual robot but without the burden of ever needing space for testing or
running out of physical bricks.

Fig. 14.3: Virtual Robotics Toolkit

2.	 Exploring Robot Mechanics using LEGO Education SPIKE App (IDE):
	 As mentioned in the previous week, IDEs enable us to programme robots to accomplish given

tasks. The LEGO Education SPIKE App provides us with an interface to programme robots in an
intuitive and fun way. It allows learners of all skill levels to programme their built robots using
either Icon-block, word-block or text-based coding.

14

SECTION 5: ROBOT DESIGN SOFTWARE

Fig. 14.4: LEGO Education SPIKE App (IDE)

	 It also provides learners with tutorials to start building robot structures using the LEGO®
Education SPIKE™ Essential or LEGO® Education SPIKE™ Prime Kits. Figure 14.5 shows a
snapshot of the interface for doing this.

Fig. 14.5: LEGO Education SPIKE App Build tutorials for constructing robots

	 Also, to help learners with the basics of programming these kits, it provides some basic tutorial
activities. These activities cover the major controllers, sensors and actuators.

15

SECTION 5: ROBOT DESIGN SOFTWARE

Fig 14.6: Tutorial Activities in LEGO Education SPIKE App

3.	 Simulating Robot Performance:
	 Simulations provide a valuable tool for testing and evaluating robot performance without the

need for physical prototyping. In virtual environments, we can:

a.	 Test Algorithms: Implement and test control algorithms for navigation, path planning, and
obstacle avoidance in a risk-free setting.

b.	 Validate Design Choices: Evaluate the robot’s stability, agility and efficiency based on its
virtual performance, leading to improved design decisions.

c.	 Error and Risk Analysis: Analyse potential errors or risks that the robot may encounter
during real-world operation, aiding in pre-emptive problem-solving.

Fig. 14.7: Virtual simulation of a mobile robot navigating through a warehouse environment (Vamshi
Konduri, 2020).

16

SECTION 5: ROBOT DESIGN SOFTWARE

Learning Tasks

Learners shall:
1.	 Explore virtual platforms for robot design and simulation.
2.	 Design and build 3D models of robots in a virtual environment.
3.	 Understand robot mechanics through virtual exploration.
4.	 Run simulations to test robot performance and identify potential issues.
5.	 Refine their design based on simulation results.
6.	 Gain hands-on experience with virtual tools used in robotics development.

Pedagogical Exemplars
1.	 Enquiry-Based Learning:

a.	 Interactive Platform Exploration: Learners explore a user-friendly virtual platform like
Bricklink or Tinkercad with a teacher-led demonstration. Through guided navigation, they
identify key interface elements (3D workspace, component library, simulation controls).

b.	 The teacher poses a guiding question: “Which virtual platform would be more suitable for
designing a complex robot with many sensors?” Learners work in pairs to research features
of Bricklink or Tinkercad using the provided information and online resources.

c.	 Comparison Chart Creation: Learners research and compare features of two virtual
platforms (Bricklink or Tinkercad) using the provided information and online resources.
They create a comparison chart highlighting factors such as user interface complexity,
supported functionalities (e.g. sensor types), and suitability for beginners. This approach
encourages critical thinking, research skills and collaboration among learners.

2.	 Problem-Based Learning: The teacher presents a project brief: “Design a robot capable of
navigating a simulated warehouse environment.”
a.	 Learners are provided with a variety of robot components and building blocks in the virtual

platform. Based on their skill level, they tackle the challenge with varying degrees of
complexity in groups.

b.	 Learners are put into mixed abilities based on their level of experience with robotic software.
c.	 Provide access to diverse resources to cater to the varying preferences of learners.

These resources may include videos, images, technical datasheets, podcasts and other
multimedia formats.

d.	 Ensure that all learners have opportunities to access the content in a way that best suits their
learning preferences and abilities.

Key Assessment
Assessment Level 1: Identify three (3) robotic actions that can be simulated in the software package(s)
you have used in this lesson.

Assessment Level 2: Write the command sequence for a simulation software package you have used
which enables movement to take pace in all or part of a robotic arm.

Assessment Level 2: Use the auto-completion function on an IDE to input a code which simulates the
movement of a robot arm.

Assessment Level 3: Using appropriate software, simulate a simple robot that can circumvent
obstacles standing in its way.

17

SECTION 5: ROBOT DESIGN SOFTWARE

Assessment Level 4: Design a robot to address one of the challenges of a recognised global robotics
challenge (e.g. World Robotics Olympiad) using any design tool. Simulate the basic mechanics of the
designed robot and present your solution in class.

Conclusion
Virtual robot design and simulation open up a world of possibilities for robotics enthusiasts. By
using virtual platforms such as Bricklink or Tinkercad, we can design intricate robot mechanics,
simulate their performance and optimise designs before physical implementation. The ability to
explore mechanics and test robots in virtual environments empowers us to create more efficient and
robust robotic systems.

18

SECTION 5: ROBOT DESIGN SOFTWARE

Week 15
Learning Indicator: Use a CAD tool to model parts of robotic systems.

Theme or Focal Area: 3D Printing and CAD Modelling for Robotic Systems

Introduction
This week, the focus is on exploring the fascinating world of 3D printing and Computer-Aided
Design (CAD) modelling for robotic systems. 3D printing has revolutionised the way we create
physical objects, including parts for robots. CAD modelling enables us to design intricate and precise
components that can be transformed into tangible objects through 3D printing. Learners will be
introduced to the process of 3D printing and CAD modelling and learn how to create custom parts for
robotic systems.

1.	 Understanding 3D Printing: 3D printing, also known as additive manufacturing, is a process
of creating physical objects by depositing material layer by layer. It enables us to turn digital
designs into tangible prototypes or end-use parts. 3D printing offers several advantages in
robotics, such as rapid prototyping, custom part production and cost-effectiveness.

2.	 Introduction to CAD Modelling: Computer-Aided Design (CAD) is the process of using
software to create detailed 2D or 3D models of objects. CAD modelling is essential for designing
robotic components with precision and complexity. CAD software allows us to visualise, modify
and simulate designs before they are 3D printed.

3.	 CAD Tools for Robotics: Several CAD software options are available for designing robotic parts:
a.	 Auto desk Fusion 360: Fusion 360 is a powerful CAD tool that integrates 3D modelling,

simulation and collaboration capabilities. It offers an intuitive interface and is widely used
in robotics and engineering.

Fig. 15.1: Autodesk Fusion 360 User Interface

b.	 Solid Works: Solid Works is a popular CAD software known for its advanced modelling
features and industry-specific tools. It provides tools for designing complex robotic
components.

19

SECTION 5: ROBOT DESIGN SOFTWARE

Fig. 15.2: Solid Works User Interface (Rob Hauser, 2021)

c.	 Tinkercad: Tinkercad is a user-friendly, web-based CAD tool suitable for beginners and
learners. It is a great starting point for learning CAD modelling.

Fig. 15.3: Tinkercad Interface

4.	 CAD Modelling for Robotic Components: This session will focus on designing two common
robotic components using CAD software:
a.	 Robot Chassis: The robot chassis is the body or framework that holds all the components

together. Design a customised robot chassis using CAD software, considering the robot
size, shape and mounting points for sensors and actuators.

b.	 Wheel Assembly: Design the wheel assembly, including motor mounts and wheels suitable
for your robot’s locomotion needs. Consider factors such as traction, size and compatibility
with the chosen motors.

5.	 Exporting for 3D Printing: Once the CAD models are ready, they need to be prepared for 3D
printing. Export the designs in a suitable file format (such as STL or OBJ) that is compatible
with the 3D printer you will be using.

20

SECTION 5: ROBOT DESIGN SOFTWARE

6.	 3D Printing the Robotic Components: Prepare the 3D printer by setting the appropriate
print parameters, such as layer height and print speed. Load the exported CAD models into
the 3D printer software and initiate the printing process. Watch as your designs come to life
layer by layer.

Fig. 15.4: 3D Printing Process

Learning Tasks

To reinforce the concepts taught:
1.	 Learners will be introduced to 3D printing and CAD modelling through discussion.
2.	 Learners will work in mixed-ability groups to design robotic components using CAD

software.
3.	 Learners will present their designs to the class and receive feedback.
4.	 Learners will work in smaller groups to prepare their designs for 3D printing.

Pedagogical Exemplars
1.	 Guided Design Challenge: Learners work in groups following a teacher-led presentation on

gripper mechanisms.
a.	 The teacher showcases different gripper designs (simple two-finger, claw-like) using

physical models or visuals. Learners then receive a pre-made 3D model of a basic robot
arm in the chosen CAD software (Tinkercad).

b.	 The teacher guides them step-by-step through the process of designing a simple gripper
attachment that can be integrated with the robot arm model. They experiment with different
shapes and sizes to create a gripper that can grasp objects of two different sizes.

c.	 Provide additional support or scaffolding for learners who may struggle with the task.
Provide clarification to learners who may need it.

d.	 Allow flexibility in how learners demonstrate their understanding such as through verbal
explanations or written responses.

21

SECTION 5: ROBOT DESIGN SOFTWARE

2.	 Interactive Tutorials and Gamification:
a.	 Learners engage in a series of interactive tutorials within the chosen CAD software (e.g.

Tinkercad). These tutorials use gamification elements such as points and badges to motivate
them as they learn basic functionalities.

b.	 The tutorials focus on creating fundamental 2D shapes, extruding them into 3D
objects and making simple modifications such as adding holes using cutting tools.

3.	 Problem-Based Learning:
a.	 Learners are put in mixed-ability groups and given tasks to print the basic robotic arm

which they designed. Highly proficient learners lead the group to print the parts with the
help of their teacher.

b.	 Approaching proficiency learners should record the steps taken to get the part printed.
Proficient learners should check for compliance with the design of the printed part and
advise the group.

c.	 Also, encourage active participation from all learners by ensuring each group member has
a role in the activity.

d.	 Provide feedback and reinforcement to reinforce learning and encourage continued
engagement.

Key Assessment
Assessment Level 1: For a CAD design tool you have used, state three (3) features, describe their
primary purpose and outline at what design stage each might be needed.

Assessment Level 2: Outline the stages of designing and quality assuring your robot gripper in
preparation for printing. Assess your group’s performance by explaining what went well, what went
not so well and areas which could be improved for future design projects.

Assessment Level 3: Explain why it is important to quality assure a robot component before printing.

Conclusion
By understanding 3D printing and CAD modelling, you have gained valuable skills in creating custom
robotic components. Using CAD tools such as Autodesk Fusion 360, Solid Works or Tinkercad, you
can design intricate and precise parts that enhance the functionality and aesthetics of your robotic
systems. By 3D printing these components, you can quickly turn your digital designs into tangible
reality, enabling you to build and customise robots efficiently. As you continue your robotics journey,
remember the power of 3D printing and CAD modelling in advancing the field of robotics and
engineering.

22

SECTION 5: ROBOT DESIGN SOFTWARE

Week 16
Learning Indicator: Use relevant intermediate tools to prepare modelled files into g-codes and
print the designs using a 3D Printer.

Theme or Focal Area: 3D Printing with G-Codes: From CAD Modelling to Physical
Prototypes

Introduction
This lesson will explore the final steps of the 3D printing process, focusing on using relevant
intermediate tools to prepare CAD (Computer Aided Design) files into G-codes and printing the
designs using a 3D printer. Understanding G-codes and the intermediate tools involved in the printing
process is essential for successfully bringing CAD designs to life.

1.	 Preparing CAD Models for 3D Printing: Before printing, CAD models need to be prepared
and optimised for the 3D printing process. This involves:
a.	 Model Inspection: Ensure that the CAD model is error-free, and there is no overlapping or

intersecting parts.

Fig. 16.1: 3D printing-model inspection

b.	 Scale and Orientation: Adjust the size and orientation of the model to fit the 3D printer’s
build volume and optimise printing speed and quality.

Fig. 16.2: 3D Printing- Scale and Orientation

23

SECTION 5: ROBOT DESIGN SOFTWARE

c.	 Supports and Rafts: Add support structures and rafts to stabilise overhangs and ensure
better adhesion to the build plate during printing.

Fig. 16.3: 3D Printing-Support and Raft

2.	 Intermediate Tools: Slicers for G-Code Generation: A slicer is an intermediate software tool
used to convert the prepared CAD model into G-codes, which the 3D printer understands. Some
popular slicer software include:
a.	 Ultimate Cura: Cura is a widely used slicer known for its user-friendly interface and

advanced features. It supports various 3D printer models and offers precise control over
printing parameters.

Fig. 16.4: Slicing process using Ultimaker Cura

b.	 PrusaSlicer: PrusaSlicer is tailored for Prusa 3D printers and offers seamless integration
with their hardware. It provides advanced customisation options for printing.

c.	 Simplify3D: Simplify3D is a versatile slicer with extensive control over print settings. It
supports a wide range of 3D printer models and is popular among experienced users.

24

SECTION 5: ROBOT DESIGN SOFTWARE

3.	 Exporting G-Codes and Printing: Once the model is sliced and the G-codes are generated, it’s
time to initiate the 3D printing process. Follow these steps:
a.	 Export G-Codes: Save the G-code file generated by the slicer onto an SD card or transfer

it to the 3D printer using USB.
b.	 Preparing the 3D Printer: Ensure the 3D printer is correctly set up, with the print bed

levelled and the appropriate filament loaded.
c.	 Start Printing: Insert the SD card with the G-code or initiate the print command through

the 3D printer’s interface. The 3D printer will start the printing process based on the G-code
instructions.

Fig. 16.5: 3D Printing Process in Action

Learning Tasks

Depending on the available time or resources, administer one or more of the following learning
tasks to help learners reinforce understanding and acquire new knowledge or skills.
Learners shall:
1.	 Inspect and prepare a CAD model for 3D printing.
2.	 Utilise slicing software to generate G-codes.
3.	 Initiate and monitor the 3D printing process.

Pedagogical Exemplars
1.	 Experiential learning: Learners use a beginner-friendly 3D modelling programme (Tinkercad,

SketchUp Free) to design a simple name tag with their name and a fun graphic.
a.	 Use visuals (simple diagrams) to show how a slicer cuts a 3D model into layers. Mention

that slicers allow users to adjust settings for print quality and speed.
b.	 Explain how slicers generate G-code instructions based on model geometry and user-

defined settings.
c.	 Introduce common slicer settings (layer height, infill density) and their impact on print

quality and time.
d.	 The teacher demonstrates the “slice” function and explains it as creating a recipe for

the printer.
e.	 Learners export their designs as G-code files with the teacher’s guidance.
f.	 The teacher bulk-prints the name tags on a pre-configured 3D printer, ensuring safety

protocols are followed.

25

SECTION 5: ROBOT DESIGN SOFTWARE

2.	 Collaborative Learning: Learners are made to sit in mixed-ability groups and choose from
pre-designed 3D models of various keychains (animals, geometric shapes).
a.	 The teacher introduces a slicing software interface (Cura, PrusaSlicer) and demonstrates

adjusting basic settings such as layer height and print speed.
b.	 Groups experiment with different settings within a designated range to see how they affect

the estimated print time and quality (shown by the software).
c.	 Groups export their G-code files with their chosen settings and print their keychains.

Key Assessment
Assessment Level 1: Name two 3D slicing software packages

Assessment Level 2: Explain the purpose of 3D slicing software.

Assessment Level 3: Revisit your design for the 3D robotic arm gripper (or part of it) from the last
lesson and use software to slice it and generate G-codes, saving the resulting file to a medium large
enough to accept it error-free.

Assessment Level 4: Print the 3D robotic arm with the 3D printer after slicing the design. Review
your 3D printed component under the headings: Is it fit for purpose (size, functionality)? Does the 3D
component need further finishing? Are any design improvements needed?

Conclusion
In this lesson, we have learned the final steps of the 3D printing process, using intermediate tools to
convert CAD models into G-codes and bringing your designs to life using a 3D printer. Understanding
how to prepare models, use slicers and manage 3D printing is crucial for successfully producing
physical prototypes of your robotic components. As you continue to explore the world of robotics,
these skills will empower you to prototype and optimise your designs efficiently, making your robotics
projects a reality. Remember the incredible potential of 3D printing in revolutionising the field of
robotics and engineering.

Section 5 Review
In this four-week section, we have seen how to effectively use virtual platforms and simulation
tools to design, simulate and print robotic parts. Learners have been introduced to IDEs used in
modelling and simulating robots. CAD modelling for robotic systems was introduced. Learners
were able to create custom parts for robotic systems under supervision. Learners have been
introduced to 3D printing software and hardware. This section covered the details of 3D printing
and suggested activities to help learners make their first 3D printed parts. Learners were taken
through generating G-codes and how to slice their designs.

Additional Reading

Link QR Code
3D PRINTING 101: The ULTIMATE Beginner’s Guide
https://www.youtube.com/watch?v=2vFdwz4U1VQ

https://www.youtube.com/watch?v=2vFdwz4U1VQ

26

SECTION 5: ROBOT DESIGN SOFTWARE

Link QR Code
Learn Fusion 360 in 30 Days for Complete Beginners! - 2023
EDITION
https://www.youtube.com/playlist?list=PLrZ2zKOtC_-
C4rWfapgngoe9o2-ng8ZBr

Tinkercad Tutorial - Complete Guide
https://www.youtube.com/playlist?list=PL90LC6zq_
Lzf9tHyFPzX_9OA35BFTfEBs

Introduction to Gazebo and .world file
https://www.youtube.com/watch?v=QghfCqVSr6s

References
1.	 Fairchild, C., & Harman, T. L. (2016). ROS robotics by example. Packt Publishing Ltd.
2.	 Open Robotics (March 1 2024). Getting Started with Gazebo? https://gazebosim.org/docs
3.	 Bricklink (October 29, 2021). Fileinfo https://fileinfo.com/extension/io
4.	 Tinkercad (August 31, 2020). Instructables.com

https://www.tinkercad.com/projects/Tinkercad-Robotics-for-School-Create-TWO-
Walking-M

5.	 Vamshi Konduri (February 15 2020). Fleet and multi-robot simulations in AWS RoboMaker.
https://aws.amazon.com/blogs/robotics/fleet-and-multi-robot-simulations-in-aws-
robomaker/#

6.	 Rob Hauser(March 24, 2021). Solidworks ERP Integration with DELMIAWorks.
https://www.javelin-tech.com/blog/2021/03/solidworks-erp-integration-delmia-works/

https://www.youtube.com/playlist?list=PLrZ2zKOtC_-C4rWfapgngoe9o2-ng8ZBr
https://www.youtube.com/playlist?list=PLrZ2zKOtC_-C4rWfapgngoe9o2-ng8ZBr
https://www.youtube.com/playlist?list=PL90LC6zq_Lzf9tHyFPzX_9OA35BFTfEBs
https://www.youtube.com/playlist?list=PL90LC6zq_Lzf9tHyFPzX_9OA35BFTfEBs
https://www.youtube.com/watch?v=QghfCqVSr6s
https://gazebosim.org/docs
https://fileinfo.com/extension/io
https://www.tinkercad.com/projects/Tinkercad-Robotics-for-School-Create-TWO-Walking-M
https://www.tinkercad.com/projects/Tinkercad-Robotics-for-School-Create-TWO-Walking-M
https://aws.amazon.com/blogs/robotics/fleet-and-multi-robot-simulations-in-aws-robomaker/
https://aws.amazon.com/blogs/robotics/fleet-and-multi-robot-simulations-in-aws-robomaker/
https://www.javelin-tech.com/blog/2021/03/solidworks-erp-integration-delmia-works/

27

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

SECTION 6: ROBOT CONSTRUCTION AND
PROGRAMMING

Strand: Robot Construction & Programming
Sub-Strand: Higher Order Design Thinking

Learning Outcome: Use flowchart diagrams to implement algorithms for solutions to basic
problems.

Content Standard: Demonstrate higher-order thinking (HOT – Analysis, Synthesis and
Evaluation) in solving programming problems.

INTRODUCTION AND SECTION SUMMARY
Welcome to the exciting world of Higher Order Design Thinking (HOT) in robotics programming!
This session will explore HOT’s critical thinking skills, including analysis, synthesis and evaluation,
to solve programming problems effectively.

Specifically, we will focus on using flowchart diagrams to implement algorithms for solving basic
problems in robotics. Flowcharts provide visual representations of the problem-solving process,
making it easier to determine inputs, processes and outputs required for specific challenges in robotics
programming.

The week covered by the section is:
	 Week 17:

1.	 Determine the Inputs, Processes and Outputs required to solve a particular problem.
2.	 Define solutions to basic automated and robotic problems using algorithms, pseudocodes

and flowchart diagrams.

SUMMARY OF PEDAGOGICAL EXEMPLARS
This section dives into Higher Order Design Thinking (HOT) in robotics programming! HOT will help
learners develop their critical thinking, analysis, synthesis and evaluation skills to solve programming
problems effectively. Teachers will utilise problem-based learning to cater to diverse learning needs.

Learners will be tasked with tackling real-world robotics problems by designing solutions using
algorithms, pseudocode and flowcharts. Flowcharts are diagrams which use symbols and arrows to
illustrate the sequence of steps in solving a problem. This way of simplifying problems into inputs,
processes and outputs will boost the problem-solving skills of learners. Learners are taught how to
simplify daily tasks into inputs, processes and outputs to increase their understanding of the HOT
concepts. Through the use of pseudocode, learners will be able to develop algorithms to solve robotic
challenges.

ASSESSMENT SUMMARY
Following each thematic area in this section, assessments gauge learner learning. These come in two
forms: learning tasks and key assessments. Learning tasks, primarily formative, focus on solidifying
understanding and acquiring new knowledge or skills. Facilitators guide these activities to enhance
the learning process.

28

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

In contrast, key assessments, typically summative, evaluate learner mastery after instruction. These
are often given as homework or quizzes outside of class. Instructors have the flexibility to choose the
assessment types that best suit their learners and learning objectives. However, it is advisable that
instructors at least guide learners to do one of the learning tasks.

29

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

Week 17
Learning Indicators:

1.	 Determine the Inputs, Processes and Outputs required to solve a particular problem.
2.	 Define solutions to basic automated and robotic problems using algorithms,

pseudocodes and flowchart diagrams.

Theme or Focal Area: Higher order Design Thinking: Flowchart Diagrams for
Algorithm Implementation

Introduction
Welcome to the exciting world of Higher Order Design Thinking (HOT) in robotics programming!
This session will explore HOT’s critical thinking skills, including analysis, synthesis and evaluation,
to solve programming problems effectively. Specifically, we will focus on using flowchart diagrams to
represent algorithms for solving basic problems in robotics. Flowcharts provide visual representations
of the problem-solving process, making it easier to determine inputs, processes and outputs required
for specific challenges in robotics programming.

1.	 Understanding Higher Order Design Thinking (HOT): Higher Order Design Thinking
involves advanced cognitive skills that go beyond simple comprehension (Nigel Cross, 2023).
By utilising HOT, you will analyse problems from multiple perspectives, synthesise information
to create innovative solutions and evaluate the effectiveness of those solutions. These skills are
instrumental in programming, leading to well-structured and efficient algorithms.

2.	 Introduction to Flowchart Diagrams: Flowchart diagrams are graphical representations of
algorithms and processes. These diagrams use symbols and arrows to illustrate the sequence
of steps in solving a problem. By using flowcharts, programmers can visualise the logic of the
algorithm, making it easier to understand, debug and optimise the code. (Anderson et al 2002)

3.	 Creating Flowcharts for Algorithm Implementation: To solve a programming problem
using flowcharts, follow these steps:
a.	 Define the Problem: Clearly articulate the problem you want to solve, including the desired

inputs and outputs.
b.	 Identify Inputs, Processes and Outputs: Determine the data inputs, the operations or

processes required, and the desired outputs for the solution.

Symbol Name Function

Start/end An oval represents a start or end point.

Arrows A line is a connector that shows relationships
between the representative shapes.

Input/Output A parallelogram represents input or output.

Process A rectangle represents a process.

Decision A diamond indicates a decision.

Fig 17.1: Basic Flowchart Symbols and their Meanings

30

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

c.	 Develop Flowchart: Use the appropriate flowchart symbols to represent each step of the
algorithm. Connect the symbols with arrows to show the flow of execution.

d.	 Test the Flowchart: Walk through the flowchart step by step, verifying the logic and
ensuring that it produces the desired outputs for different scenarios.

Fig. 17.2: Flowchart Example for a basic algorithm for adding two numbers

4.	 Applying Flowchart Diagrams in Robotics Programming: Flowchart diagrams find extensive
application in robotics programming to:
a.	 Design Navigation Algorithms: Create flowcharts to plan the robot’s path, make decisions

based on sensor inputs and control its movements efficiently.
b.	 Implement Control Loops: Use flowcharts to design control loops that adjust robot actions

based on feedback from sensors or other external factors.
c.	 Solve Logical Problems: Employ flowchart diagrams to solve logical challenges such as

obstacle avoidance, decision-making and pattern recognition.

Fig. 17.3: Flowchart Example for Robot Line Following algorithm

31

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

Learning Tasks

Learners should:
1.	 Analyse a problem and identify key components (inputs, processes, outputs).
2.	 Translate a solution strategy for this problem into a visual flowchart using appropriate

symbols.
3.	 Test and refine the flowchart to ensure it produces the desired results.c

Pedagogical Exemplars
Problem-Based Learning

1.	 In mixed-ability groups, let learners create a flowchart for making breakfast porridge.
a.	 Provide symbols representing start/end, decision points, processes and inputs/outputs.
b.	 Guide learners to break down the steps (get a bowl, add water, pour milk, etc.) and connect

them with arrows.

2.	 In mixed-ability groups, learners select a real-world robotics challenge (e.g. line following,
obstacle avoidance) and identify the necessary inputs, processes and outputs required to solve
the problem. They then present identified parts to the class.

3.	 Learners should be made to provide alternative flow charts to the same problem.

Key Assessment
Assessment Level 1: Briefly describe the purpose of using flowchart diagrams in robotics programming.

Assessment Level 2: Describe three (3) ways in which flowcharts can be applied to the programming
of robots.

Assessment Level 3: Create a flowchart for a 2-wheeled robot with two underside mounted light
sensors to follow a white line in the shape of an oval. Consider sensor inputs, processes, flows,
decisions, start.

Assessment Level 4: Research a real-world example of a robot that uses complex algorithms and
decision-making processes. Explain how flowcharts likely played a role in the development of its
programming.

Conclusion
In this lesson, we have explored Higher Order Design Thinking and its application in robotics
programming. By using flowchart diagrams, you can implement algorithms for solving basic problems
and plan the logic behind robotic tasks efficiently. As you continue your robotics journey, remember
that HOT and flowchart diagrams are invaluable tools for developing well-structured and effective
solutions to challenges in robotics programming. Embrace the power of design thinking to advance
your robotic projects and optimise their performance. Through practice and application, you will
enhance your programming skills and become a more proficient robotics engineer.

32

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

Theme or Focal Area: Algorithmic Problem-Solving in Robotics: Pseudocodes and
Flowchart Diagrams

Introduction
This session will explore the art of algorithmic problem-solving for robotics. To efficiently solve
problems, we will use three powerful tools: algorithms, pseudocodes and flowchart diagrams. These
tools will help us define solutions to basic automated and robotic challenges, making our robotic
systems more capable and intelligent and provide the starting point for writing programmes which
control their functionality.

Understanding Algorithms in Robotics
An algorithm is a step-by-step procedure for solving a problem or accomplishing a specific task. It is
not so different from a recipe used in preparing a meal. Before implementing any functionality with
a robot, we carefully think through the step-by-step approach to achieve this, that is, its algorithm for
achieving such functionality. It is usually important to think about this in minutes or simple steps, not
combining complex actions into one step. These steps are first written down in simple basic language,
known as the Pseudocode.

Pseudocode can be described as a step-by-step description of an algorithm using plain English. It
does not have any syntax or rules that govern how it should be represented. It may even make use of
symbols or abbreviations. It bridges the gap between natural language and programming language,
allowing us to outline the logic of the solution before implementing it in a specific programming
language. (Corment et al, 2022)

The Pseudocode is then translated to a flowchart diagram before implemented with a selected
programming language. As stated earlier, flowchart diagrams provide a visual representation of the
algorithm’s logic. By using pseudocode and flowcharts, we can easily understand the sequence of
steps and the decision-making process within the algorithm.

Fig. 17.4: Example of an algorithm written in pseudocode and translated into a flowchart

Reference Link QR Code
What exactly is an algorithm? Algorithms explained | BBC
Ideas: https://www.youtube.com/watch?v=ZnBF2GeAKbo

file:///C:/Users/Caleb/Documents/The%20Shop/Tools/Planning/T-Tel%20Board/Book%202/Typeset%20Manuscripts%20Book%202/What%20exactly%20is%20an%20algorithm?%20Algorithms%20explained%20|%20BBC%20Ideas:%20https://www.youtube.com/watch?v=ZnBF2GeAKbo
file:///C:/Users/Caleb/Documents/The%20Shop/Tools/Planning/T-Tel%20Board/Book%202/Typeset%20Manuscripts%20Book%202/What%20exactly%20is%20an%20algorithm?%20Algorithms%20explained%20|%20BBC%20Ideas:%20https://www.youtube.com/watch?v=ZnBF2GeAKbo

33

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

Defining Solutions to Basic Robotic Problems:
This session will tackle basic robotic problems and define solutions using algorithms, pseudocodes
and flowchart diagrams. Some examples of problems include:

a.	 Obstacle Avoidance: Create algorithms to enable the robot to navigate around obstacles
in its path.

b.	 Line Following: Develop solutions that allow the robot to follow a line using sensors and motors.
c.	 Sumo Robot Strategy: Design algorithms for a sumo robot to detect and push opponents out

of a sumo ring.

Fig. 17.5: Flowchart diagram illustrating the algorithm for obstacle avoidance

Practice Problem:
Problem: Design a Robot Maze Solver
Task: Create an algorithm, pseudocode and flowchart diagram for a robot to solve a maze autonomously.
The robot should explore the maze, avoid dead-ends and find the shortest path to the exit.

Learning Tasks

To reinforce understanding, learners should
1.	 Discuss the role of algorithms in robotics.
2.	 Analyse pseudocode examples.
3.	 Interpret flowchart diagrams.
4.	 Explore solutions for basic robotic problems.
4.	 Develop their own pseudocode and flowchart for a selected problem, etc.

Pedagogical Exemplars
Problem-Based Learning

1.	 In mixed-ability groups, Learners tackle real-world robotics problems (e.g. maze solving, sumo
robot strategy) and design solutions using algorithms, pseudocode and flowcharts.

34

SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING

2.	 Learners can be given some pseudocodes to break down step by step by explaining what each
line does.

3.	 Provide additional worked-through examples or mini-challenges for beginners. Offer
opportunities for peer support and collaboration during problem-solving activities.

Key Assessment
Assessment Level 1: Draw a flowchart to represent automatic turning a light on and off based on a
threshold value within a light sensor.

Assessment Level 2: Explain the difference between an algorithm and a flowchart diagram.

Assessment Level 3: Design an algorithm for a sumo robot that prioritises avoiding being pushed out
of the ring. How would this differ from an algorithm focused on pushing opponents out?

Assessment Level 4: Research a real-world application of robotics that utilises more complex
algorithms. Explain how the specific algorithms contribute to the robot’s functionality.

Conclusion
In this lesson, we explored algorithmic problem-solving techniques in robotics, utilising pseudocodes
and flowchart diagrams. By mastering these tools, you can efficiently define solutions to basic
automated and robotic problems. Algorithms are the backbone of any robotic system, guiding their
actions and behaviours. As you progress in your robotics journey, practise implementing algorithms,
pseudocodes and flowcharts to enhance your programming skills and create smarter and more capable
robotic systems. Remember, the power of algorithmic thinking is the key to unlocking the full potential
of robotics in various real-world applications.

Section 6 Review
This section introduced higher-order thinking (HOT) to the learners as a critical component
of robot design. Learners were taught how to use critical thinking skills, including analysis,
synthesis and evaluation, to solve programming problems effectively. They were taught how
to use flowchart diagrams to implement algorithms for solving basic problems in robotics.
Flowcharts provide visual representations of the problem-solving process, making it easier to
determine inputs, processes and outputs required for specific challenges in robotics programming.
Learners were introduced to how algorithms are simplified using pseudocodes to depict the
functions in the algorithm. These tools will help us define solutions to basic automated and
robotic challenges, making our robotic systems more capable and intelligent.

References
1.	 Cross, N. (2023). Design thinking: Understanding how designers think and work. Bloomsbury

Publishing.
2.	 Andersen, B., Fagerhaug, T., & Henriksen, B. (2002). Mapping work processes. Quality Press
3.	 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms.

MIT press.

35

SECTION 7: ROBOT CONSTRUCTION

SECTION 7: ROBOT CONSTRUCTION

Strand: Robot Construction & Programming
Sub-Strand: Robot Construction

Learning Outcomes:

1.	 Appraise the effects of mass and centre of gravity in designing structures that withstand
forces

2.	 Create robots using fabricated robotic materials or local materials to implement basic
mechanics

Content Standards:
1.	 Demonstrate a general understanding of rigid bodies and design processes for stable structures.
2.	 Demonstrate the ability to create robots, vehicles and other contraptions with moving parts.

INTRODUCTION AND SECTION SUMMARY
This section of the robotics teaching manual focuses on Robot Construction. Learners will gain the
knowledge and practical skills necessary to design and build their own robots. The key learning
outcomes are twofold: understanding the impact of mass and centre of gravity on robot stability and
constructing robots using both prefabricated kits and everyday materials.

Through hands-on activities, learners will explore the science behind stable structures and basic
mechanics such as gears, levers and axles. This will culminate in the ability to create robots with
moving parts, fostering creativity and problem-solving skills. By the end of the section, learners will
be well equipped to design and build robots that can move, explore their environment, and potentially
even complete exciting challenges.

The weeks covered by the section are:
	 Week 18: Robot Construction: Designing Stable Structures and Understanding Mass and

Centre of Gravity
	 Weeks 19 and 20: Creating Robots with Basic Mechanics: Exploring Gears, Vehicles and

Moving Mechanisms

SUMMARY OF PEDAGOGICAL EXEMPLARS
This section dives into how teachers can effectively guide learners in building robots. Several
teaching methods are highlighted. Using Building on What Others Say, discussions tap into learners’
existing knowledge of physics and real-life experiences to explore stability, forces and momentum
in robot design. This activates prior knowledge and helps learners connect scientific principles to
practical applications. Experiential Learning & Project-Based Learning approaches get learners
actively building sub-structures, robots and gear trains. Through these activities, they gain practical
skills in using gears, levers and axles while applying the learned concepts. Teachers guide these
activities, while project-based learning fosters teamwork and problem-solving as learners collaborate
on building robots that meet specific criteria.

These strategies can be adapted for different learning styles and can be further enriched for gifted
learners by providing them with more complex challenges and encouraging the exploration of real-
world applications in robotics engineering.

36

SECTION 7: ROBOT CONSTRUCTION

ASSESSMENT SUMMARY
Following each thematic area in this section, assessments gauge learner learning. These come in two
forms: learning tasks and key assessments. Learning tasks, primarily formative, focus on solidifying
understanding and acquiring new knowledge or skills. Facilitators guide these activities to enhance
the learning process. In contrast, key assessments, typically summative, evaluate learner mastery
after instruction. These are often given as homework, mid-semester exams and end-of-semester
exams outside of class. Instructors have the flexibility to choose the assessment types that best suit
their learners and learning objectives. However, it is advisable that instructors at least guide learners
to do one of the learning tasks.

37

SECTION 7: ROBOT CONSTRUCTION

Week 18
Learning Indicators:

1.	 Describe the effect of mass and centre of gravity on the stability of a structure or robot
and strategies for designing systems that can withstand forces.

2.	 Build structures for a specified use case and test them for stability and ability to
withstand forces.

Theme or Focal Area: Robot Construction - Designing Stable Structures and
Understanding Mass and Centre of Gravity

Introduction
Welcome to the world of Robot Construction! This section will explore the crucial aspects of designing
stable structures for robots and understanding the effects of mass and centre of gravity. Building a
robot that can withstand forces and maintain stability is essential for successful robotics projects.
Let’s delve into the design processes, principles of rigid bodies, and strategies for creating robots,
vehicles and other contraptions with moving parts that can endure various forces.

Fig. 18.1: Mass on Earth vs. mass on Mars (Wikimedia Foundation. (2023, January 6). Mass versus weight.)

Understanding Rigid Bodies and Stable Structures
In robotics, a rigid body refers to an object that does not deform under external forces. Designing
stable structures involves ensuring that the robot’s components are rigidly connected, preventing
unnecessary movements that may compromise stability during operation.

38

SECTION 7: ROBOT CONSTRUCTION

Fig. 18.2: Robots with rigid structures and structures that lack rigidity (Charbel Dalely, Tawk Gursel Alici,
Comparison of the proposed robotic arm system and related designs. | download scientific diagram 2021)

Designing Stable Structures:
To create stable structures for robots and contraptions:

1.	 Plan the Framework: Carefully plan the robot’s framework to ensure that it provides sufficient
support and rigidity for all moving parts and components.

2.	 Choose Sturdy Materials: Select materials that are strong and rigid enough to withstand the
anticipated forces and loads.

3.	 Optimise Weight Distribution: Distribute the robot’s mass evenly to maintain a low centre of
gravity, promoting stability during movement and operation.

Fig. 18.3: Robotic arm showing optimised weight distribution (Standard Bots. (2023, October 4). https://
standardbots.com/blog/how-much-does-a-robot-arm-cost)

Understanding Mass and Centre of Gravity:
Mass refers to the amount of matter an object contains, while the centre of gravity is the point where
the entire weight of an object is considered to be concentrated. Understanding these principles is
critical for designing stable structures that can withstand forces and perform optimally.

Effects of Mass and Centre of Gravity on Stability
The mass and centre of gravity (CoG) of a robot play a crucial role in its stability. Here’s how they
impact a robot’s ability to stay upright and function effectively:

39

SECTION 7: ROBOT CONSTRUCTION

1.	 Mass
a.	 Higher Mass: A heavier robot generally has more momentum and inertia, making it more

resistant to tipping over from small disturbances. However, a very heavy robot may also be
cumbersome and require more powerful motors to move, impacting efficiency.

b.	 Lower Mass: A lighter robot can be more agile and energy-efficient. However, it’s also
more susceptible to tipping over, especially if the weight is not distributed evenly.

2.	 Centre of Gravity (CoG)
a.	 Lower Centre of Gravity: A lower centre of gravity provides better stability. Imagine a

seesaw – the one with the lower centre of gravity is harder to tip. In robots, a lower Centre
of Gravity means the weight is distributed closer to the base, making it more difficult to
topple over.

b.	 Higher Centre of Gravity: A higher centre of gravity increases the risk of tipping. Robots
with high centres of gravity, such as some bipedal robots, may require complex control
systems or additional balancing mechanisms to maintain stability.

Fig. 18.4: Tightrope walking (Indian tightrope Walker)

Think of a balancing act. A tightrope walker with a heavy backpack (high mass) might be more
difficult to push off balance compared to someone carrying a light bag. However, the walker with the
backpack also has a higher centre of gravity, making it easier to topple if they lean too far to one side.

Incorporating these concepts in robot design:
Robot designers consider both mass and Centre of Gravity to achieve optimal stability. This
can involve:

1.	 Strategic placement of components: Placing heavier components lower in the robot’s body
lowers the Centre of Gravity.

2.	 Counterweights: Adding weights to the opposite side of a heavy component can help balance
the Centre of Gravity.

3.	 Wide and sturdy base: A wider base increases the robot’s footprint, making it harder to tip.

By understanding the effects of mass and Centre of Gravity, robot designers can create robots that are
both stable and functional, allowing them to perform their tasks effectively.

40

SECTION 7: ROBOT CONSTRUCTION

Learning Tasks

Depending on the available time or resources, administer the following learning tasks to help
learners reinforce understanding and acquire new knowledge or skills.
Learners:
1.	 design and construct a robot chassis using the provided materials. The challenge is to design

a robot chassis that can withstand external forces, such as pushing or pulling, without tipping
over or losing stability. They must consider the distribution of mass and the placement of
the centre of gravity in their designs to maximise stability.

2.	 will test their designs by applying external forces to simulate real-world conditions.
3.	 will document their design process, including sketches, diagrams and explanations of how

they applied knowledge of mass and centre of gravity to enhance stability.
4.	 will then evaluate the effectiveness of their designs and reflect on strategies for improving

stability.

Pedagogical Exemplars
Building on What Others Say (Activating Prior Knowledge):

1.	 Begin by facilitating an interactive session where you ask learners to share their experiences of
working with objects that are stable and unstable (e.g. leaning tower vs. pyramid).

2.	 Showcase real-world examples such as balancing bikes or tightrope walking. Discuss how
weight distribution and centre of gravity affect stability in these scenarios.

3.	 For learners with prior physics knowledge, explore concepts such as linear momentum and
forces acting on objects. Discuss how unbalanced forces can cause a robot to tip over.

Talk for Learning (Interactive Discussions):
1.	 Use simple demonstrations to illustrate the concepts. For example, tilt a ruler with a weight on

one end and observe how the centre of gravity affects its stability. Learners can participate by
predicting the outcome.

2.	 Divide learners into small mixed groups to discuss the relationship between mass, Centre of
Gravity and stability. Encourage them to share examples and sketches of stable and unstable
structures.

3.	 Pose open-ended questions such as “How can you modify a robot design to lower its centre of
gravity?” or “What strategies can engineers use to improve the stability of a tall building?” to
encourage deeper thinking.

4.	 Briefly review physics concepts (linear momentum) if needed, ensuring a foundation for
all learners.

5.	 Offer manipulatives or alternative models for learners who benefit from hands-on exploration.
6.	 Use clear illustrations and diagrams throughout the lesson (e.g. rigid vs non-rigid structures,

centre of gravity in robots). Encourage learners to sketch their designs and visualise the centre
of gravity.

7.	 Offer 3D modelling tools or physical construction materials for learners who prefer kinaesthetic
learning approaches, etc.

41

SECTION 7: ROBOT CONSTRUCTION

Key Assessment
Assessment Level 1: Explain why a pyramid is more stable than a narrow, tall tower.

Assessment Level 2: Explain how the mass and centre of gravity of a robot affects its stability.

Assessment Level 3: Collect images of robots with different designs. Explain how their design might
affect their stability?

Assessment Level 4: Compare and contrast the stability of a robot with a high centre of gravity and
a robot with a low centre of gravity. What measures can be taken to address centre of gravity issues
when building robots?

Conclusion
In this lesson, we have explored the fundamentals of Robot Construction, focusing on designing stable
structures and understanding the effects of mass and centre of gravity. Creating robots, vehicles and
contraptions with moving parts that can withstand forces is essential for successful robotics projects.
As you continue your journey in robotics, remember the significance of rigidity, weight distribution
and centre of gravity in achieving stability and optimising robot performance. Through careful design
and consideration of these principles, you will create robust and reliable robotic systems that excel in
real-world applications.

Theme or Focal Area: Building and Testing Robot Structures: Ensuring Stability and
Force Resistance

Introduction
This section will delve into the practical aspects of constructing robot chassis and frameworks for
specified use cases. We will focus on ensuring stability and the ability to withstand forces during the
design and fabrication process. By putting theory into practice, you will gain valuable insights into
creating robust and reliable robotic systems that can excel in real-world applications.

Understanding Use Case Requirements
Before diving into construction, we must first analyse the specific use case and functional requirements
of the robot. Consider factors such as:

1.	 Task and environment:
	 Determine what the robot will be doing and the environment it will be operating in. Different

tasks and environments may demand specific structural considerations.

2.	 Load Capacity:
	 Assess the expected load that the robot may carry or interact with during its operation.

3.	 Mobility and Manoeuvrability:
	 Define the required mobility and manoeuvrability to ensure the robot can navigate effectively.

Selecting Suitable Materials
Based on the use case requirements, choose materials that provide the necessary strength, rigidity and
durability. Common materials used in robot construction include:

1.	 Metals: Aluminium and steel offer excellent strength-to-weight ratios and are ideal for heavy-
duty applications.

2.	 Plastics: Lightweight and flexible plastics are suitable for smaller robots and rapid prototyping.

42

SECTION 7: ROBOT CONSTRUCTION

3.	 Composites: Composite materials, such as carbon fibre, offer high strength and low weight,
making them suitable for advanced robotics projects.

Building Stable Structures:
To construct stable robot structures:

1.	 Design Framework: Create a detailed design of the robot’s framework, considering the layout
of components, attachment points and load distribution.

2.	 Mechanical Connections: Ensure strong and secure mechanical connections, such as bolts,
nuts, screws or welding, to hold the structure together firmly.

3.	 Reinforcements: Use cross-bracing or additional support structures where needed to enhance
stability.

Building a Robot Car Chassis Kit – Arduino
Follow the link: https://randomnerdtutorials.com/build-robot-car-chassis-kit-arduino/

Testing for Stability and Force Resistance:
Once the robot structure is built, it’s time to put it to the test. The following are some tests that we can
use to test the robot’s structure.

1.	 Stability Test:Evaluate the robot’s stability by simulating various movement scenarios, such as
turning, accelerating or stopping abruptly.

2.	 Load Test: Test the robot’s ability to withstand the expected load by gradually adding weight
or applying force to critical points.

3.	 Impact Test: Assess the robot’s resistance to impacts or external forces that it may encounter
in its intended environment.

Reference Link QR Code
Follow the link: Testing Robustness of Robot - https://
www.youtube.com/watch?v=aFuA50H9uek

Follow the link: Robot hand Performance Test - https://
www.nist.gov/video/robotic-hand-performance-testing

Learning Tasks

Depending on the available time or resources, administer the following learning tasks to help
learners reinforce understanding and acquire new knowledge or skills.
Learners:
1.	 analyse robot use cases and identify requirements.
2.	 research and select suitable materials.
3.	 design a robot chassis and framework.
4.	 build the robot structure with strong connections.
5.	 conduct stability, load and impact tests.

https://randomnerdtutorials.com/build-robot-car-chassis-kit-arduino/
https://www.youtube.com/watch?v=aFuA50H9uek
https://www.youtube.com/watch?v=aFuA50H9uek
https://www.youtube.com/watch?v=aFuA50H9uek
https://www.nist.gov/video/robotic-hand-performance-testing
https://www.nist.gov/video/robotic-hand-performance-testing
https://www.nist.gov/video/robotic-hand-performance-testing

43

SECTION 7: ROBOT CONSTRUCTION

Pedagogical Exemplars
Experiential learning:

1.	 Consider turning this activity into a project where learners work in teams throughout the week.
This fosters collaboration, communication and problem-solving skills.

2.	 Provide clear instructions and demonstrations initially. Break down the task into smaller steps,
especially for complex use cases. Offer guidance and support as learners progress.

3.	 Adjust the complexity of the use case and materials based on learner skill levels. Offer pre-cut
materials or simpler design options for struggling learners.

4.	 Introduce concepts step by step (use case analysis, material selection, construction techniques).
Provide clear instructions and visuals for each stage of the building process.

5.	 Offer peer support or group work for learners who benefit from collaborative learning. Break
down complex steps into smaller, achievable tasks.

6.	 Offer a variety of use case categories and difficulty levels. Provide additional scaffolding
(materials lists, design templates) for beginners while allowing advanced learners to explore
more complex scenarios.

7.	 Offer 3D modelling software or simulations for learners who prefer a virtual approach. Provide
alternative testing methods (e.g. using simulations) for those with limited physical capabilities.

Additional considerations:
1.	 Dedicate time for learners to explore and experiment with different materials (fabricated or

local) to understand their properties and suitability for the robot design.
2.	 Encourage learners to adopt a design thinking approach. This involves sketching initial ideas,

iterating on their designs based on testing, and refining their robots for optimal performance.
3.	 Guide learners on setting up appropriate testing procedures. This includes defining parameters

for stability, load and impact testing, and establishing clear success criteria.
4.	 Ensure learners understand safety protocols when working with tools or building materials.
5.	 Encourage learners to document their design process, including sketches, material choices and

test results. Facilitate a class discussion for reflection after testing, where learners share their
experiences and learnings.

Key Assessment
Assessment Level 1: Identify two methods for creating a strong robot structure.

Assessment Level 2: Describe the steps involved in testing a robot structure for stability.

Assessment Level 3: A robot designed for line following in a competition needs to be lightweight and
manoeuvrable. Explain how the choice of materials would differ from a robot designed for carrying
heavy objects in a warehouse?

Assessment Level 4: A robot arm needs to be strong enough to lift objects but also be flexible enough
to reach various positions. How can you design a structure that balances these seemingly opposing
requirements?

44

SECTION 7: ROBOT CONSTRUCTION

Conclusion
In this practical lesson, you have learned how to design, build and test robot structures for specific
use cases. Understanding use case requirements, selecting suitable materials and ensuring stability
are essential steps in constructing reliable and efficient robotic systems. Through hands-on experience
and testing, you have gained valuable insights into creating robust robots that can withstand forces
and excel in various real-world applications. Keep experimenting, refining your designs, and pushing
the boundaries of robotics to make innovative and impactful contributions to the field.

45

SECTION 7: ROBOT CONSTRUCTION

Weeks 19 & 20
Learning Indicator:

Sit in groups and create robots using robotic kits and/or local materials to implement basic
mechanics for actuations that make use of the following:
•	 GEARS (Gear Ratios, Compound Gear Systems, Changing angle of rotation using

gears, Using worm gears)
•	 VEHICLES (Driving robots with single motors, Driving robots with two motors)
•	 MOVING WITHOUT TYRES (Walking Machines)
•	 ARMS, WINGS & OTHERS (Flapping Wings, Gripping Figures, Lifting Mechanisms)

Theme or Focal Area: Creating Robots with Basic Mechanics - Exploring Gears,
Vehicles and Moving Mechanisms

Introduction
This section will explore the world of basic mechanics in robotics by creating robots using fabricated
robotic materials or locally available resources. Working in groups, you will get hands-on experience
building robots with different actuation mechanisms, including gears, vehicles, walking machines,
arms, wings, and more. By the end of this lesson, you will have created a variety of robots that
demonstrate essential mechanical principles and actuation techniques.

Gears and Gear Ratios
Gears are mechanical components used to transmit motion and power between rotating shafts. They
consist of toothed wheels or cylinders that mesh with each other to transmit torque, enabling speed
and direction changes in machinery. Gears are essential components for transmitting motion and
power in robots.

Understanding Gear Types: Different types of gears offer specific advantages and applications based
on their designs and functionalities. Let’s explore three common types of gears used in robotics:

1.	 Spur Gears: Spur gears are the most basic and commonly used type of gears. They consist of
straight teeth mounted on parallel shafts, and the teeth mesh directly, resulting in a smooth and
efficient transfer of motion. Spur gears are cost-effective to manufacture and provide precise
speed and torque ratios. They are often used in applications where precise rotary motion is
required, such as robot arms, robotic manipulators and transmission systems.

Fig. 19.1: Spur Gears (KHK USA Metric Gears. KHK. (n.d.))

46

SECTION 7: ROBOT CONSTRUCTION

	 Applications in Robotics:
i.	 Robotic Arm Joints: Spur gears are frequently used in robotic arm joints to achieve precise

rotational motion and control.
ii.	 Gear Transmissions: Spur gears are essential components in robot gearboxes for

transmitting power from motors to various parts of the robot.

2.	 Bevel Gears: Bevel gears have teeth that are cut on conical surfaces and are used to transmit
motion between intersecting shafts. They are ideal for changing the direction of motion by 90
degrees and are available in various configurations such as straight bevel gears and spiral bevel
gears. Bevel gears offer smooth operation and are used in applications where space constraints
require motion to change direction effectively.

Fig. 19.2: Bevel Gears (Thomas J.S. Cross. (n.d.). (PDF) generation of non-circular spiral bevel gears by
face-milling method. A spiral bevel set)

	 Applications in Robotics:
i.	 Differential Mechanisms: Bevel gears are often used in robot differentials to distribute

power to the wheels and allow for smooth turning.
ii.	 Gearboxes for Robotics with Non-parallel Shafts: Bevel gears are used when the motor

shaft and output shaft are not in the same plane.

3.	 Worm Gears: Worm gears consist of a cylindrical worm (screw) meshing with a toothed wheel
(gear). They provide high gear ratios, making them ideal for applications requiring torque
multiplication and reduced speed. Worm gears are highly efficient in one direction but have a
lower efficiency in the reverse direction. Due to their self-locking nature, they are commonly
used in applications where back-driving prevention is essential.

Fig. 19.3: Worm Gears (Worm Gears. Stahl Gear & Machine Co. (2021, February 11))

47

SECTION 7: ROBOT CONSTRUCTION

	 Applications in Robotics:
i.	 Robotic Arm and Gripper Mechanisms: Worm gears are used in robotic arms and

grippers to provide precise control and prevent back-driving.
ii.	 Lifting Mechanisms: Worm gears are employed in the lifting mechanisms of robots to lift

heavy objects with reduced effort.

Overall, the selection of gears in robotics depends on the specific application requirements, including
the need for precise motion control, direction changes, gear ratios and torque transmission. Each
type of gear has its advantages and limitations, making them suitable for different robotic tasks. As
robotics technology advances, new gear designs and applications will continue to contribute to the
evolution of robotic systems.

Gear Ratios: Calculating Gear Ratios in Robotics: Gear ratios are crucial for controlling the speed
and torque of robot movements. The gear ratio represents the ratio of the number of teeth on the driving
gear (the gear connected to the motor) to the number of teeth on the driven gear (the gear connected
to the robot’s output shaft). Let’s demonstrate how to calculate gear ratios using appropriate images
and diagrams:
Step 1: Identify the Gears
Start by identifying the driving gear (Gear 1) and the driven gear (Gear 2). The driving gear is directly
connected to the motor shaft, and the driven gear is connected to the robot’s output shaft.

Fig. 19.4: Diagram showing Gear 1 with 20 teeth and Gear 2 with 40 teeth

Step 2: Count the Teeth
Count the number of teeth on each gear. Let’s assume Gear 1 (the driving gear) has 20 teeth, and Gear
2 (the driven gear) has 40 teeth.

Step 3: Calculate the Gear Ratio
To calculate the gear ratio, divide the number of teeth on Gear 2 by the number of teeth on Gear 1.
Gear Ratio = Number of teeth on Gear 2 / Number of teeth on Gear 1
Gear Ratio = 40 / 20
This gives a figure of 2
The Gear Ratio = 2:1
This means that the driving gear has to rotate two full turns to move the driven gear ONCE.

48

SECTION 7: ROBOT CONSTRUCTION

Step 4: Interpret the Gear Ratio
The calculated gear ratio (2:1 in this case) represents how many times the driving gear (Gear 1) must
rotate to make the driven gear (Gear 2) complete one full rotation. This ratio slows down the output
movement to half the speed of the input.

Step 5: Speed and Torque Control
a.	 If the gear ratio is greater than 1 (e.g. 2:1), the output shaft will rotate at a slower speed than the

motor shaft but with increased torque. This is known as a speed reduction gear, and it allows
the robot to move slower but with more force.

b.	 If the gear ratio is less than 1 (e.g. 1:2), the output shaft will rotate at a faster speed than the
motor shaft but with reduced torque. This is known as a speed-increasing gear that allows the
robot to move faster but with less force.

Reference Link QR Code

Everything about Gear Ratio - https://www.youtube.com/
watch?v=40RX2HRKpwA

Gear Ratio, Torque and Speed - https://www.youtube.com/
watch?v=R1cxzDKBFuU

By selecting appropriate gear ratios, robotics engineers can tailor the robot’s movements to suit
specific applications, optimising speed and torque based on the robot’s tasks and requirements. The
calculated gear ratio plays a significant role in achieving efficient and precise motion control for
various robotic systems.

Compound Gear Systems: Compound gear systems combine multiple gears to achieve specific
speed and torque requirements. Designing compound gear systems for different robot tasks requires
careful consideration of the desired speed, torque and motion requirements. Follow these steps to
design a compound gear system:

1.	 Understand the Task Requirements: Before designing the compound gear system, clearly
define the robot task’s speed and torque requirements. Determine the desired output speed and
the amount of force or torque needed to perform the task effectively.

2.	 Identify the Primary Motor and Output Shaft: Identify the primary motor that will power
the compound gear system. Determine the output shaft where the final motion or force will be
delivered.

3.	 Calculate the Gear Ratio: Calculate the required gear ratio to achieve the desired output speed
and torque. The gear ratio is the ratio of the number of teeth on the driven gear (output gear) to
the number of teeth on the driving gear (input gear). The gear ratio determines how much the
output shaft rotates concerning the input shaft.

	 To calculate the gear ratio on systems that have more than two gears, work out the ratios
between intermeshed gears, then multiply the ratios. For example:

	 To find the overall gear ratio across three gears, multiply the individual gear ratios:
	 Overall Gear Ratio=Gear Ratio (Gear 1 to Gear 2) ×Gear Ratio (Gear 2 to Gear 3)

https://www.youtube.com/watch?v=40RX2HRKpwA
https://www.youtube.com/watch?v=40RX2HRKpwA
https://www.youtube.com/watch?v=R1cxzDKBFuU
https://www.youtube.com/watch?v=R1cxzDKBFuU

49

SECTION 7: ROBOT CONSTRUCTION

	 For example, if Gear 1 to Gear 2 has a ratio of 2:1 and Gear 2 to Gear 3 has a ratio of 3:1, the
overall gear ratio would be 6:1

4.	 Choose Gear Types and Sizes: Select the appropriate gear types based on the task requirements.
Common gear types include spur gears, bevel gears and worm gears.
a.	 Spur gears: Provide straight-toothed gears that are ideal for transmitting motion between

parallel shafts.
b.	 Bevel gears: Transmit motion between intersecting shafts and are suitable for changing the

direction of rotation.
c.	 Worm gears: Use a screw-like gear to achieve a large gear reduction and are effective for

driving heavy loads.

5.	 Arrange Gear Components: Arrange the gears in the compound gear system to achieve the
desired gear ratio. The arrangement may involve multiple stages of gears, each providing a
specific reduction or increase in speed and torque.

6.	 Consider Efficiency and Backlash: Keep in mind the efficiency of the gear system, as energy
losses can occur during gear engagement. Additionally, account for backlash, which is the play
or clearance between the gear teeth. Minimising backlash ensures smoother and more precise
movements.

7.	 Ensure Adequate Support and Alignment: Properly support and align the gears within the
system. Use high-quality bearings to reduce friction and ensure smooth operation. Misalignment
can lead to premature wear and reduced efficiency.

8.	 Test and Optimise: Once the compound gear system is assembled, test it under different load
conditions to verify its performance. Make adjustments if necessary to achieve the desired
output speed and torque.

9.	 Consider Safety and Material Selection: Pay attention to safety considerations, especially
when dealing with high torque applications. Choose materials that can withstand the forces and
loads involved in the robot task.

10.	 Iterate and Improve: Robot design is an iterative process. Continuously gather feedback and
data from the robot’s performance to identify areas for improvement. Modify the compound
gear system as needed to achieve better results.

Fig. 19.5: Compound Gear Systems (V. Ryan (© 2010-16), GEARS AND GEAR SYSTEMS)

50

SECTION 7: ROBOT CONSTRUCTION

Determining Angle of Rotation using Gears
When two gears mesh, they transmit motion from one to the other. The number of teeth on each gear
determines the gear ratio, which affects the angle of rotation. By choosing gears with different tooth
counts, you can alter the output angle of rotation relative to the input angle.

For example,
If a small gear (with fewer teeth) drives a larger gear (with more teeth), the larger gear will rotate
more slowly, producing a greater angle of rotation. In a robot gripper mechanism, a small driving gear
and a larger gear will make the gripper open wider.

Conversely, if a larger gear drives a smaller gear, the smaller gear will rotate more quickly but with a
smaller angle of rotation. In a robot gripper mechanism, a large driving gear and a smaller gear will
make the gripper open a fraction.

This principle is often used in robotic arms and manipulators to control the precise movement of end-
effectors or grippers.

Converting Rotational Motion into Linear Motion
Rack and Pinion Mechanism: One common way to convert rotational motion into linear motion is
by using a rack and pinion mechanism. The pinion (a gear) meshes with a linear gear known as a rack.
As the pinion rotates, it causes the rack to move linearly.

Fig. 19.6: Rack and Pinion Mechanism

This mechanism is commonly employed in various robotic systems, such as CNC machines, linear
actuators and steering systems in vehicles.

Converting Linear Motion into Rotational Motion
Lead Screw Mechanism: Another way gears can transform motion is by converting linear motion
into rotational motion using a lead screw mechanism. A lead screw is a threaded rod that rotates
within a nut. As the lead screw turns, it pushes or pulls the nut along its length, converting the linear
motion of the nut into rotational motion of the lead screw.

51

SECTION 7: ROBOT CONSTRUCTION

Fig. 19.7: Lead Screw Mechanism

Lead screws are frequently used in robotic systems for precise positioning, lifting mechanisms, and
in combination with motors to achieve linear motion.

Combining Gears in Robotics: Achieving Functionality through Synergy
Robots often rely on a combination of different gear types to achieve specific functionalities. Here is
an exploration of some common scenarios:

1.	 Precise Gripper Control with Powerful Base Movement (Robot Arm):
•	 Gears Used:

○	 Worm Gear: Offers a high reduction ratio for precise control of the gripper’s opening
and closing.

○	 Spur Gears: Deliver efficient power transfer for robust arm movement.

•	 Why Combine?
○	 A worm gear provides fine rotational control over the gripper’s delicate movements.
○	 Spur gears efficiently transfer power from the motor for strong and stable arm movement.

•	 Example Activity: A robot arm picks up a small object with its gripper (controlled by the
worm gear) while the base rotates smoothly (powered by spur gears) to position itself for
further actions.

2.	 Articulated Steering with Power Delivery (Car Robot):
•	 Gears Used:

○	 Bevel Gears: Change the direction of rotation by 90 degrees, allowing the steering
wheel rotation to translate to perpendicular wheel movement.

○	 Spur Gears: Efficiently transfer power from the motor to the wheels for driving.

•	 Why Combine?
○	 Bevel gears redirect the steering wheel’s rotational input for perpendicular wheel control.
○	 Spur gears ensure smooth power transfer from the motor to propel the car.

•	 Example Activity: A car robot navigates a course, using the steering wheel to control
direction while the motor and spur gears provide the driving force.

52

SECTION 7: ROBOT CONSTRUCTION

3.	 Linear Actuator with Efficient Power Transfer (Gripper or Lifting Platform):
•	 Gears Used:

○	 Rack and Pinion Gears: Convert the rotary motion of a motor into linear motion for
extending and retracting the gripper or lifting platform.

○	 Spur Gears: Can be used within the rack and pinion mechanism to connect the motor
to the pinion gear for efficient power transfer.

•	 Why Combine?
○	 Rack and pinion gears translate rotary motion into the linear movement needed for the

gripper or platform.
○	 Spur gears (if used) ensure smooth power transfer from the motor to the rack and

pinion mechanism.

•	 Example Activity: A robot arm uses a rack and pinion mechanism in its gripper to extend
and retract for grasping objects. Spur gears within the mechanism might ensure efficient
power transfer from the motor.

Vehicles with Single and Dual Motors:
Build robots with wheels or tracks driven by single and dual motors
In this robotics project, we will build robots with either wheels or tracks for locomotion. We will
explore how to control them using both single and dual motor configurations to achieve different
driving capabilities. This hands-on activity will provide valuable insights into robot mechanics and
motor control.

Materials Needed:
•	 Robot chassis with wheels or tracks
•	 Motors (both single and dual motor configurations)
•	 Motor driver board or H-bridge
•	 Micro controller (e.g. Arduino or Raspberry Pi)
•	 Battery pack or power supply
•	 Wheels (if using wheel-based locomotion)
•	 Tracks (if using track-based locomotion)
•	 Connecting wires and tools for assembly

Instructions:
•	 Step 1: Assemble the Robot Chassis: Start by assembling the robot chassis, ensuring that it can

accommodate either wheels or tracks, depending on your preference. Secure the motors in place
and mount the wheels or tracks on the chassis.

•	 Step 2: Single Motor Configuration: For single motor configuration, connect one motor to the
motor driver board or H-bridge. Wire the motor driver board to the microcontroller, providing
control over the motor’s speed and direction.

•	 Step 3: Dual Motor Configuration: For dual motor configuration, connect two motors to the
motor driver board or H-bridge. Wiring the motors in parallel will allow synchronised control,
enabling the robot to move forward or backwards smoothly.

•	 Step 4: Motor Control Programming: Write a motor control programme using your chosen
micro controller (Arduino or Raspberry Pi). Utilise the appropriate programming language (e.g.
Arduino IDE for Arduino boards) to control the motor’s speed and direction.

53

SECTION 7: ROBOT CONSTRUCTION

•	 Step 5: Implementing Forward and Backward Movement: Test the robot’s forward and backward
movement by adjusting the motor speed and direction in the programme. Observe how different
motor speeds impact the robot’s movement capabilities.

•	 Step 6: Turning Capabilities: Experiment with turning capabilities in both single and dual motor
configurations. In a single motor configuration, use differential control of the wheels or tracks
to achieve turning. In dual motor configuration, adjust the speed of the motors on each side to
turn the robot smoothly.

•	 Step 7: Testing Different Terrains: Place the robot on various terrains (e.g. smooth surface,
carpet or rough terrain) to observe its performance. Analyse how the robot adapts to different
surfaces and how its driving capabilities change.

•	 Step 8: Fine-Tuning and Optimisation: Fine-tune the motor control programme to optimise
the robot’s performance. Adjust motor speeds and turning parameters to achieve smoother
movements and enhanced manoeuvrability.

•	 Step 9: Experimenting with Dual Motor Differential Steering: If using wheels, experiment with
dual motor differential steering. By controlling each motor separately, you can enable the robot
to rotate in place, providing precise turning capabilities.

Reference Link QR Code
DIY Arduino Car with 1 DC Motor, Ultrasonic Sensor &
VEX Robot Parts
https://www.youtube.com/watch?v=Z3FJRHGcyqo

Moving Without Tyres
Walking machines are a fascinating alternative method for robot locomotion, designed to navigate
challenging terrains that may be difficult for wheeled or tracked robots. These robots imitate the
movements of living creatures such as insects, animals or humans, to traverse uneven surfaces, climb
obstacles and adapt to various environments. The concept of walking machines draws inspiration
from nature’s designs, allowing robots to achieve increased agility, versatility and adaptability. Let’s
explore some key features and advantages of walking machines:

1.	 Locomotion Principle: Walking machines utilise legged locomotion to move. The robot’s legs
replicate the walking or crawling motion of animals, giving them the ability to take steps, lift
off the ground and make adjustments to maintain stability on uneven terrain.

2.	 Versatility in Terrain: One of the primary advantages of walking machines is their ability to
navigate a wide range of terrains. They can move over rocky surfaces, climb stairs, traverse
sandy or muddy landscapes and even cross gaps that would be challenging for wheeled robots.

3.	 Stability and Balance: Walking machines are designed to maintain stability and balance during
locomotion. They can adapt their leg movements and body posture to keep themselves upright
even on sloped or uneven surfaces.

4.	 Obstacle Negotiation: Walking machines can effectively negotiate obstacles by adjusting their
leg movements to step over or climb onto objects in their path. This makes them valuable for
search and rescue operations in disaster-stricken areas.

5.	 Energy Efficiency: In certain situations, walking machines can be more energy-efficient than
wheeled or tracked robots. The legged locomotion requires less energy to traverse certain
terrains compared to rolling or sliding on wheels or tracks.

https://www.youtube.com/watch?v=Z3FJRHGcyqo

54

SECTION 7: ROBOT CONSTRUCTION

6.	 Adaptability to Changing Environments: Walking machines’ adaptability allows them
to function well in environments that may change rapidly, such as disaster zones or rough
outdoor terrains.

7.	 Biomimicry and Bio-inspired Designs: Many walking machines take inspiration from the
locomotion of animals and insects, leading to bio-inspired designs. These robots can mimic the
gait of animals such as insects, quadrupeds or even bipeds, depending on the application.

8.	 Research and Exploration: Walking machines have applications in scientific research and
planetary exploration. Their ability to traverse rough landscapes on other planets such as Mars,
can provide valuable data and insights for space missions.

While walking machines offer many advantages, they also present challenges such as control
complexity and higher degrees of freedom in legged locomotion. Engineers and roboticists continue
to work on refining the design and control of walking machines to enhance their performance and
enable them to tackle even more challenging terrains and tasks.

Fig. 19.8: Walking Robots (Riccio, Boston Dynamics’ 10 robots that will change the world: Near
future 2022)

Arms, Wings & Other Actuators
Flapping Wing Aerial Robot: Designing a robot with flapping wings mimics the flight of birds and
insects. These robots are perfect for exploring challenging terrains and aerial surveillance.

Components Required:
•	 Flapping Wing Mechanism
•	 Fuselage or Frame
•	 Motors and Propellers
•	 Microcontroller or Flight Controller
•	 Sensors (optional for autonomous flight)

55

SECTION 7: ROBOT CONSTRUCTION

Fig. 19.9: Flapping Wing Aerial Robot (Zhong & Xu, Power modelling and experiment study of large
flapping-wing flying robot during forward flight 2022)

Gripping Figure Pick-and-Place Robot: The gripping figure robot is designed to pick up objects from
one location and place them in another. This robot is valuable in industrial automation and logistics
applications.

Components Required:
•	 Robotic Arm with Gripper
•	 Base or Chassis
•	 Motors for Arm Movement
•	 Microcontroller or PLC (Programmable Logic Controller)
•	 Sensors (optional for object detection)

Fig. 19.10: Gripping Figure Pick-and-Place Robot (Robotic ARM isolated Images-Adobe Stock)

Lifting Mechanism Robot: The lifting mechanism robot is designed to carry and transport heavy
objects with precision. This robot is useful in scenarios where human strength is insufficient or
dangerous.

56

SECTION 7: ROBOT CONSTRUCTION

Components Required:
•	 Robotic Arm with Lifting Mechanism
•	 Base or Chassis
•	 Motors for Arm Movement
•	 Microcontroller or PLC
•	 Sensors (optional for object detection and safety)

Fig. 19.11: Lifting Mechanism Robot (254 VEX talk: Episode 3 - an overview of lifts 2012)

Learning Tasks

Depending on the available time or resources, administer one or more of the following learning
tasks to help learners reinforce understanding and acquire new knowledge or skills.
Design Your Custom Robot
1.	 Learners select one of the three robot types (flapping wing, gripping figure, or lifting

mechanism) to build. Plan the robot’s components and dimensions based on the intended
use and task requirements.

2.	 Learners assemble the chosen robot using the appropriate materials and actuation
mechanisms.

3.	 Learners test the robot’s functionality, making necessary adjustments for optimal
performance.

Pedagogical Exemplars
Project-Based Learning:

1.	 Organise learners into mixed groups to work collaboratively on determining gear ratios and
output characteristics of gear trains.

2.	 Assign problem-solving tasks that require learners to calculate gear ratios and predict output
speeds or torques based on given parameters.

3.	 Provide hands-on activities where learners build and test gear systems to reinforce their
understanding of gear ratios and compound gear arrangements.

57

SECTION 7: ROBOT CONSTRUCTION

4.	 Encourage learners to document their project findings and present their results to the class,
promoting communication and presentation skills.

Experiential Learning:
1.	 Provide real-world scenarios or use cases where gears are essential for controlling speed, torque,

timing and direction of forces.
2.	 Allow learners to work in groups to design, build and test fully functional robotic subsystems

that utilise gears to meet the given use case requirements.
3.	 Present challenges or constraints that require learners to apply their knowledge of gears

creatively to solve problems and achieve desired outcomes.
4.	 Facilitate reflection sessions where learners evaluate their designs, identify areas for improvement

and iterate on their solutions to optimise performance.

Key Notes for Teachers:
1.	 Create opportunities for learners to actively engage with the material through discussions,

hands-on activities, and project work.
2.	 Offer guidance and support as learners navigate the learning tasks, ensuring they understand the

concepts and objectives.
3.	 Foster collaboration among learners to promote teamwork and peer learning.
4.	 Encourage learners to think critically and apply their knowledge creatively to solve problems

and design functional robotic subsystems.
5.	 Stress the importance of documenting project findings, calculations, and design iterations to

reinforce learning and facilitate assessment.

Key Assessment
Assessment Level 1: Explain how gears can be used to speed up or slow down the actions of robots.

Assessment Level 2: Explain the difference between a single motor and a dual motor configuration
in robots with wheels or tracks.

Assessment Level 3: You are designing a robot arm that needs to move slowly with high precision.
Explain what type of gear and gear ratio you would choose?

Assessment Level 4: How can backlash (clearance between gear teeth) affect the performance of a
compound gear system in a robot? How can it be minimised?

Conclusion
In this lesson, you have explored basic mechanics in robotics, creating robots with gears, vehicles,
walking capabilities and various actuation mechanisms. By combining different mechanical principles,
you have built versatile robots capable of performing various tasks. Robotics is a field that offers
endless possibilities, and understanding these fundamental mechanics will set the foundation for
more advanced robotic systems. Continue to innovate and experiment, using your creativity to design
robots that can solve real-world challenges and push the boundaries of robotics.

58

SECTION 7: ROBOT CONSTRUCTION

Section 4 Review
In this section on Robot Construction, learners delved into fundamental concepts essential for
designing and building stable and functional robots. They explored the effects of mass and
centre of gravity on stability and learning strategies for creating structures that withstand forces.
Through hands-on activities, they applied their understanding to build structures for specific
use cases, testing them rigorously for stability and durability.

In the following weeks, learners worked collaboratively to create robots using both robotic kits
and local materials. They applied basic mechanical principles such as gears, gear ratios and
compound gear systems to implement various actuations. Additionally, they explored diverse
locomotion methods, including driving robots with single and dual motors, walking machines,
and mechanisms for gripping, lifting and flapping wings.

Throughout the section, learners demonstrated a general understanding of rigid bodies,
design processes for stable structures, and the ability to create robots with moving parts. This
comprehensive review encapsulates their journey in mastering the fundamentals of robot
construction and programming.

Additional Reading

Link QR Code

Gear Types, Design Basics, Applications and More - Basics of
Gears
https://www.youtube.com/watch?v=ZhDO16FDmxA&t=5s

Everything about Gear Ratio - https://www.youtube.com/
watch?v=40RX2HRKpwA

Gear Ratio, Torque and Speed - https://www.youtube.com/
watch?v=R1cxzDKBFuU

References
1.	 Wikimedia Foundation. (2023, January 6). Mass versus weight. Wikipedia. https://simple.

wikipedia.org/wiki/Mass_versus_weight
2.	 Charbel Dalely, Tawk Gursel Alici. (2021a, February). Comparison of the proposed robotic

arm system and related designs. | download scientific diagrams. A Review of 3D‐Printable
Soft Pneumatic Actuators and Sensors: Research Challenges and Opportunities. https://
www.researchgate.net/figure/Comparison-of-the-proposed-robotic-arm-system-and-related-
designs_tbl1_372799179

https://www.youtube.com/watch?v=ZhDO16FDmxA&t=5s
https://www.youtube.com/watch?v=40RX2HRKpwA
https://www.youtube.com/watch?v=40RX2HRKpwA
https://www.youtube.com/watch?v=R1cxzDKBFuU
https://www.youtube.com/watch?v=R1cxzDKBFuU

59

SECTION 7: ROBOT CONSTRUCTION

3.	 How much does a robot arm cost? Standard Bots. (2023, October 4). https://standardbots.
com/blog/how-much-does-a-robot-arm-cost

4.	 Indian tightrope Walker Stock Photos - Free & royalty-free stock photos from Dreamstime.
Dreamstime. (n.d.). https://www.dreamstime.com/photos-images/indian-tightrope-
walker.html

5.	 KHK USA Metric Gears. KHK. (n.d.). https://www.khkgears.us/products/spur-gears
6.	 Thomas J.S. Cross. (n.d.). (PDF) generation of non-circular spiral bevel gears by face-milling

method. A spiral bevel set. https://www.researchgate.net/publication/298733810_Generation_
of_Non-Circular_Spiral_Bevel_Gears_by_Face-Milling_Method

7.	 Worm Gears. Stahl Gear & Machine Co. (2021, February 11). https://stahlgear.com/project/
worm-gears/

8.	 V. Ryan (© 2010-16) GEARS AND GEAR SYSTEMS. Spur Gears and simple gear trains. https://
technologylearner.com/gears1/gears1.htm

9.	 Britannica, T. Editors of Encyclopaedia (2007, April 4). rack and pinion. Encyclopedia
Britannica. https://www.britannica.com/technology/rack-and-pinion

10.	 Riccio, G. (2022, March 26). Boston Dynamics’ 10 robots that will change the world: Near
future. Futuro Prossimo. https://en.futuroprossimo.it/2022/03/10-robot-boston-dynamics/

11.	 Zhong, S., & Xu, W. (2022, March 21). Power modelling and experiment study of large
flapping-wing flying robots during forward flight. MDPI. https://www.mdpi.com/2076-
3417/12/6/3176

12.	 Robotic ARM isolated images – browse 37,516 stock photos, vectors, and video. Adobe Stock.
(n.d.). https://stock.adobe.com/search?k=robotic%2Barm%2Bisolated

13.	 254 VEX talk: Episode 3 - an overview of lifts. An Overview of Lifts. (2012, January 10).
https://challenges.robotevents.com/challenge/18/entry/498

https://www.khkgears.us/products/spur-gears
https://www.britannica.com/technology/rack-and-pinion

60

SECTION 8: PROGRAMMING ROBOTS

SECTION 8: PROGRAMMING ROBOTS

Strand: Robot Construction & Programming
Sub-Strand: Programming Robots

Learning Outcomes:

1.	 Create programmes that make use of decision structures and loop conditions to control
robots.

2.	 Design and programme Finite State Machines

Content Standards:
1.	 Establish the essence of programming and demonstrate skills in the use of programming

constructs for robots.
2.	 Demonstrate understanding and programming skills in the implementation of Finite State

Machines (FSM).

INTRODUCTION AND SECTION SUMMARY
This section will focus on programming robots. It will expose learners to the various programming
categories and introduce them to block-based coding, a fun and beginner-friendly approach to
programming. Learners will explore how to drag and drop these blocks to build instructions for their
constructed robots without memorising complex codes. Through various practical activities, learners
would familiarise themselves with the LEGO Education Spike App and the LEGO Spike Prime kit.
Towards the end of the section, they will practise with robots that are categorised as either Finite State
Machines or controlled feedback loop systems.

The weeks covered by the section are:
	 Weeks 21 - 23:

1.	 Create computer programmes from pre-designed flowcharts that have single-decision
conditions.

2.	 Create computer programmes from pre-designed flowcharts that have nested decision
conditions.

	 Week 24:
1.	 Create computer programmes from pre-designed flowcharts that have a controlled feedback

loop with loop interrupts.
2.	 Formulate and programme FSMs for controlling different use cases.

SUMMARY OF PEDAGOGICAL EXEMPLARS
This section uses different teaching strategies to engage learners and equip them with a good
understanding of programming robots. Weeks 21-23 introduce learners to block-based programming
first using an inquiry-based learning approach where learners are made to brainstorm and discuss
the concept of giving instructions to machines using either block-based or text-based programming
through research and presentations. Then, using an experiential learning approach, working in mixed-
ability groups, they are introduced to block-based programming using the LEG Education Spike App.
They follow video tutorials, assemble robots and programme them, with the facilitator providing
support throughout.

61

SECTION 8: PROGRAMMING ROBOTS

Later in weeks 21-23, using talk for learning approach, learners are made to review flowchart
diagrams and their role in programme planning. An interactive presentation introduces common
flowchart symbols and their corresponding block-based code equivalents. Then, using a problem-
based learning approach, learners work in mixed-ability groups to translate flowchart diagrams into
block-based code using the LEGO Education Spike App. They test their programmes on pre-built
robots, debug any errors and receive feedback from the teacher.

Week 24 focuses on helping learners understand the differences between controlled feedback loop
systems and finite state machines (FSMs). Utilising differentiated instruction, the facilitator tailors
the explanations to cater for different learning needs, starting with a basic overview and progressing
to more technical details for advanced learners. Using the managing talk for learning approach,
a moderated discussion encourages learners to share their research findings and understanding of
controlled feedback loops and FSMs. They use a Venn diagram or a chart to highlight the similarities
and differences between these systems. The teacher facilitates the discussion, provides feedback and
clarifies any questions. Finally, using a problem-based learning approach, working in mixed-ability
groups, learners tackle a challenge: identifying the states needed for a robot to navigate a maze. They
then draw an FSM diagram and test it using the LEGO Education Spike App. The teacher provides
support and encourages learners to explain their reasoning behind the chosen states.

ASSESSMENT SUMMARY
Following each thematic area in this section, assessments gauge learner learning. These come in two
forms: learning tasks and key assessments. Learning tasks, primarily formative, focus on solidifying
understanding and acquiring new knowledge or skills. Facilitators guide these activities to enhance
the learning process. In contrast, key assessments, typically summative, evaluate learner mastery
after instruction. These are often given as homework or quizzes outside of class. Instructors have
the flexibility to choose the assessment types that best suit their learners and learning objectives.
However, it is advisable that instructors, at least, guide learners to do one of the learning tasks.

62

SECTION 8: PROGRAMMING ROBOTS

Week 21 - 23
Learning Indicators:

1.	 Create computer programmes from pre-designed flowcharts that have single-decision
conditions.

2.	 Create computer programmes from pre-designed flowcharts that have nested decision
conditions.

Theme or Focal Area: Introduction to Programming with Block-Based Coding

Introduction
In this lesson, we will explore the basics of how to give instructions to robots, just like giving a recipe
to follow. We will see how robotics uses programming to control robots and make them perform
specific tasks. We will learn about block-based coding, a fun and beginner-friendly approach that
uses visual building blocks to represent programming concepts.

What is Programming?
Programming, in essence, is giving a set of instructions to a computer to tell it what to do and how
to do it. It is like creating a recipe for the computer to follow, but instead of ingredients and steps for
cooking, you use programming languages to define actions and achieve specific results.
Relating programming to robotics, imagine you have a robot you want to control. Programming is like
giving the robot instructions through a special language it understands. This language tells the robot
exactly what to do, step by step, to complete a task. So simply put, programming can be described as
the art of telling a computer, computer-based device or robot what to do through a set of instructions.
The language used for programming is known as a programming language or coding language. A
programming language usually comprises a set of instructions (codes) and is often governed by
syntax (rules that show how to use them correctly).
There are several programming languages in our world today. Some very common examples include
C, C++, Python, Scratch, Snap, Java, Ruby, Javascript, and others. There are several ways in which
programming languages can be categorised, but one simple way of categorising them is whether they
are (visual) block-based or text-based.

1.	 Block-Based Coding/Programming: This is a beginner-friendly approach that uses visual
building blocks to represent programming concepts. Just like building with LEGOs, you drag
and drop these blocks together to create your programme. Examples include Scratch, Snap,
and Blockly .

2.	 Text-Based Coding/Programming: This is a more traditional approach that uses written text
commands to create programmes. While powerful, it can be more challenging to learn for
beginners. Examples include C, C++, Python, and Java.

Fig. 21.1: Block-based in Scratch vs Text-based Programming in C (REFERENCE)

63

SECTION 8: PROGRAMMING ROBOTS

Block-Based Coding: A Stepping Stone to Programming
Block-based coding offers many advantages for beginners, especially young learners. Some of these
advantages include:

1.	 Easy to Learn: The drag-and-drop interface makes it intuitive and requires no memorisation of
complex syntax (like punctuation rules in written language)

2.	 Visually Engaging: The colourful blocks and animations make learning fun and engaging,
keeping learners motivated.

3.	 Reduces Errors: Block-based coding often prevents syntax errors (common mistakes in text-
based coding) since the blocks fit together logically. This allows you to focus on the core
programming concepts.

4.	 Experimentation Encouraged: The visual nature of block-based coding makes it easy to
experiment and try different things without worrying about breaking your programme.

Based on these advantages, in our current programming journey in robotics, we will start with Block-
based coding.

A Brief History of Block-Based Coding
In 2003, MIT developed Scratch, one of the most popular block-based coding platforms. Scratch’s
success has led to the widespread adoption of block-based coding in schools and educational
institutions, making programming accessible to a new generation of learners.

Block-based coding allows you to create a variety of interactive projects, including:
•	 Games: Design chase games, clicker games or even ping-pong games using blocks to control

characters and objects.
•	 Interactive Animations: Bring your imagination to life by creating animated stories and

characters.
•	 Program Robots: Create on-screen sprites that can be programmed to move and interact with

their environment. This can simulate basic robot behaviour such as navigating a maze, avoiding
obstacles, etc.

Block-based Programming with LEGO Education SPIKE™! Application/IDE
As mentioned in Week 14, LEGO® Education SPIKE™! App allows learners of all skill levels to
programme their built robots using either Icon-block, word-block or text-based coding. The Icon-
block option allows learners to programme using blocks which are similar to those used in LEGO
MINDSTORM EV3 IDE. Word-Blocks, on the other hand, are similar to blocks used in Scratch and
text-based coding using the Python programming language.

For now, our focus would be on using the word-block programming option. LEGO® Education
SPIKE™! app uses this block-based programming in a fun and intuitive way to bring LEGO creations
to life. Imagine building with colourful LEGO bricks, but instead of creating physical structures,
you are building programmes. This block-based programming uses visual blocks that snap together,
representing different programming concepts. Just like LEGO bricks, these blocks connect logically
to create your programme. The App provides learners with a detailed tutorial on the use of each of the
blocks. This can be found in the “Help” Section, as demonstrated in Fig. 21.2.

64

SECTION 8: PROGRAMMING ROBOTS

Fig 21.2: Block Descriptions of each block under the Help Section of LEGO Education SPIKE™! app

To familiarise oneself with these building blocks, the following video resources have been provided.
The first is a playlist of eight videos which provides a quick overview of using the LEGO® Education
SPIKE™ Prime Kit. It provides tutorials for using both the word-blocks and Python Programming
Language. However, learners can, for now, focus on using the word-blocks.

The second playlist of seventeen videos rehashes some of the points made in the first, and using some
practical examples, it provides a detailed explanation of how to use the various blocks. Learners can
focus on the first fifteen videos in this playlist.

The resources are as follows:

Reference Links QR Code

SPIKE Prime Tutorials https://www.youtube.com/playlist?list=PL_
zXBalpjbu33gw5CML3DtL7fN8640qku

Lego Spike Prime https://www.youtube.com/
playlist?list=PLS9qLR8VoFA62KcAzsUfAOQgLrEXCp78B

Practising with these videos may take a while, so they should be spread judiciously over the
ensuing weeks.

https://www.youtube.com/playlist?list=PL_zXBalpjbu33gw5CML3DtL7fN8640qku
https://www.youtube.com/playlist?list=PL_zXBalpjbu33gw5CML3DtL7fN8640qku
https://www.youtube.com/playlist?list=PLS9qLR8VoFA62KcAzsUfAOQgLrEXCp78B
https://www.youtube.com/playlist?list=PLS9qLR8VoFA62KcAzsUfAOQgLrEXCp78B

65

SECTION 8: PROGRAMMING ROBOTS

Learning Tasks

Based on the content covered under this thematic area, learners will
1.	 define programming and its role in robotics.
2.	 differentiate between block-based and text-based coding.
3.	 identify advantages of block-based coding for beginners.
4.	 explore the LEGO Education SPIKE app as a block-based programming platform.
5.	 get familiar with the various building blocks in the LEGO Education SPIKE app used in

programming robots.

Pedagogical Exemplars
The goal of this lesson is for all learners to get familiar with block-based programming. Consider
the following keynotes when administering the suggested pedagogical approaches in the curriculum:

1.	 Recognise and capitalise on the shared characteristics among learners while also addressing
their individual differences, including interests, readiness levels and learning styles.

2.	 Offer multiple pathways for learners to engage with the content. This could involve providing
varying levels of detail, from basic concepts to in-depth explorations, to accommodate different
learning needs. The key thing is that the learning outcome set for the lesson is achieved among
all learners.

3.	 Inquiry-based learning: Learners are made to sit in mixed-ability groups with guided questions
to briefly differentiate between text-based and block-based programming.
a.	 Using this approach, start with a brainstorming session. Ask learners: “What are some ways

we can give instructions to a machine?” Write their answers on the board.
b.	 Based on their submissions, explain the concept of programming as giving a set of

instructions to a computer and differentiate it from using a computer.
c.	 Briefly explain text-based programming and block-based programming. Though brief, your

explanation should be enough to paint a good picture of these programming categories.
This is to enable learners to carry out the next task.

d.	 Form mixed-ability groups and give each group some guided questions to help them research
further on text-based programming and block-based programming. The questions should
seek to help learners describe these terms, differentiate them and state the advantages each
has over the other.

e.	 Allow learners to present the result of their research, showing a comparison chart (image,
table, presentation, etc.) highlighting the key differences between block-based and text-
based coding.

f.	 Be ready to help learners who may need clarification.

4.	 Experiential Learning: Learners work in mixed-ability groups to familiarise themselves with
block-based coding using the LEGO Education Spike App.
a.	 Using this approach, start by showing a short video (2-3 minutes) demonstrating block-

based coding in action (e.g. Scratch tutorial, LEGO Spike tutorial).
b.	 Create groups with members having a mix of design, robot assembly, programming,

communication, and presentation skills. This fosters collaboration and uses each learner’s
strengths.

c.	 Provide each learner group with a watching guide as they watch the overview of the LEGO
Spike Prime Tutorials (the first video playlist). All groups could watch the video from a
single screen while putting down their observations and questions.

66

SECTION 8: PROGRAMMING ROBOTS

d.	 After the playlist, allow learner groups to discuss their observations and attempt to get
answers from their peers. Circulate among groups, providing support, clarification and
guidance as needed.

e.	 After the discussion, walk all learners on how to access the additional resources (video
playlists, installation files, Spike Prime Kits, etc.). Where need be, provide multiple
resources to allow learners of different interests.

f.	 In the ensuing weeks, allow each learner group to have access to a video playback device
where they can engage with the videos in the second playlist. They will need to install the
applications, assemble the robots and programme them as they follow the video tutorial.

g.	 Circulate among groups, providing support, clarification and guidance as needed. Ensure
that no learner is left behind.

h.	 Provide additional support or scaffolding for learners who may struggle with the task.
Provide clarification for learners who may need it.

i.	 Provide feedback and reinforcement to reinforce learning and encourage continued
engagement.

Key Assessment
Assessment Level 1: Scratch is an example of a block-based coding platform. (True/False)

Assessment Level 2: Briefly explain the difference between block-based coding and text-based coding.

Assessment Level 2: Create a chart comparing and contrasting the advantages and disadvantages of
block-based and text-based coding for beginners.

Assessment Level 3: In groups, use the LEGO Education SPIKE app to create a simple programme
that controls a robot to complete a specific task (e.g. following a line, avoiding obstacles, etc.). Present
your programme to the class and explain how it works.

Conclusion
This lesson has been an introduction to block-based coding and robotics. We have learned what
programming is and how it is used to control robots. We have explored the differences between block-
based and text-based coding and discovered the advantages of block-based coding for beginners.
Learners have also gotten familiar with the LEGO Education SPIKE app, a block-based programming
platform that allows them to experiment and create their own robot programmes.

Theme or Focal Area: Creating Computer Programmes from Flowcharts

Introduction
Up to this point, we have established that before programmes are developed to implement robotic
solutions, they are well thought out and planned. In the planning process, after understanding the
problem to be solved, an algorithm is developed using pseudocodes and later flowcharts. It is these
flowcharts that are later implemented into code or programmes. Having been introduced to block-
based programming and flowcharts. It is important that we learn to bridge the gap and see how to
translate our flowcharts into actual programmes that control robots.

Translating Flowcharts to Blocks:
The flowchart simply represents a map to solve your defined problem and implement the desired
task. Each flowchart symbol usually translates into a specific block(s) in your programme. Here is

67

SECTION 8: PROGRAMMING ROBOTS

a breakdown of some basic ways to translate the common flowchart symbols when using the LEGO
education SPIKE app.

•	 Start/End: These are your programme’s “Start” and “Stop” blocks. It is an oval shape in a
flowchart. In the LEGO Education SPIKE app, these blocks are found under the Events blocks
category. Also note that the start blocks are of various types, some of which require additional
parameters or information to make room for specific sensor input or data before they start. The
start blocks are usually rounded at the top to show that they do not snap to any other block from
the top. In other words, they are the first blocks usually used. The stop block, on the other hand,
has its base flattened to show that it is usually the last of all blocks; no other blocks snap to its
bottom. This is illustrated in Fig. 21.3.

Fig. 21.3: Start and Stop Blocks in LEGO Education SPIKE app

•	 Process: These translate to various blocks depending on the action to be carried out. These
processes may be found under the motors, movement, light and sound block categories in the
LEGO Education SPIKE app. Some examples are presented in Fig. 21.4.

Fig. 21.3: Examples of Blocks that carry out processes in the LEGO Education SPIKE app

68

SECTION 8: PROGRAMMING ROBOTS

•	 Decision: Where decisions are to be taken based on prevailing conditions, various control
blocks are used. The most typical blocks used to implement these conditions are the if-then
block, if-then-else block, wait until block and repeat until block. These blocks usually have a
hexagon shape, indicating an area where the condition to be sought for is defined.

Fig. 21.4: Examples of Control Blocks in the LEGO Education SPIKE app that are used to implement
decisions

Fig. 21.5: Examples of Control Blocks with specified conditions used to implement decisions

•	 Connector: The arrows in a flowchart simply guide you in connecting the correct blocks in
your programme. They tell of the logical flow of your programme and the order in which they
are to appear.

Mastering Conditions: When to Use Which Block
As mentioned earlier, there are four main blocks that are used to implement conditions in the LEGO
Education SPIKE app. Knowing the right block to select when checking for a specific condition or
situation is important. The following are some general guidelines that can help in the selection process.

If Then Block: Use this block when the robot needs to perform an action only if a specific condition
is true. In this case, we are not concerned about what to do when the condition is not true. Think of it

69

SECTION 8: PROGRAMMING ROBOTS

as a “yes or no” question where we are only concerned with providing an action when the answer is
yes. If the answer is “yes,” the robot performs the action within the block.

Example:
•	 Flowchart: A robot which moves in the forward direction needs to stop only if it detects an

object in front of it using an ultrasonic sensor. The object should not be more than 10cm close
to it. This is depicted in the flowchart diagram in Fig. 21.6.

Fig. 21.6: Flowchart depicting a situation with a condition

•	 Block Program: An “If Then Block” checks the ultrasonic sensor. If the sensor detects an
object in front of it not more than 10cm (true), the robot stops moving.

Fig. 21.7: Block programme which implements the flowchart using an if then block.

70

SECTION 8: PROGRAMMING ROBOTS

If Then Else Block: This block allows for two possible actions based on the condition. If the condition
is true, the robot performs one set of actions within the “If” section. If the condition is false, the robot
performs a different set of actions within the “Else” section.
Example:

•	 Flowchart: A robot installed with a colour sensor is to move forward only when it sees a black
colour else it should stop moving.

Fig. 21.8: Flowchart depicting a situation with a condition

•	 Block Programme: An “If Else Block” checks the line sensor. If the sensor detects black
(true), the robot uses a “Turn Left” block. If it doesn’t detect black (false), the robot uses a
“Move Forward” block.

Fig. 21.9: Block programme which implements the flowchart using an if then else block.

71

SECTION 8: PROGRAMMING ROBOTS

	 Wait Until Block: This block pauses the programme until a specific condition becomes true.
This is useful for situations where the robot needs to wait for something to happen before
proceeding.

Example:
•	 Flowchart: A robot with a colour sensor must wait until it sees the colour green before

moving forward.

Fig. 21.10: Flowchart depicting a situation with a condition

•	 Block Programme: A “Wait Until” block checks the colour sensor. The programme pauses
here until the colour sensor detects the colour green (true). Once the colour green is detected,
the robot uses a “Move Forward” block.

Fig. 21.11: Block programme which implements the flowchart using a wait-until block.

72

SECTION 8: PROGRAMMING ROBOTS

	 Note that the above situation could equally have been implemented using an if then block
together with a forever block as shown below.

Fig. 21.12: An equivalent of the wait-until block programme

Repeat Until Block: This block repeats a series of actions until a specific condition becomes true. It
is like a loop that keeps running until a certain requirement is met.
Example:

•	 Flowchart: A robot needs to keep playing a tune until it sees a green colour.

Fig. 21.13: Flowchart depicting a situation with a condition

73

SECTION 8: PROGRAMMING ROBOTS

•	 Block Programme: A repeat until block contains the actions for playing the tune (meow
tune). The loop keeps repeating until the colour sensor detects the colour green (true), at which
point the loop stops.

Fig. 21.14: Block programme which implements the flowchart using a repeat-until block.

Mastering Conditions: Nested Statements
You have mastered using “If then”, “If then Else,” “Wait Until,” and “Repeat Until” blocks to create
awesome robot programmes. But what if your robot needs to make even more complex decisions?
That is where nested blocks come in.

Think of a set of Russian nesting dolls – the bigger doll holds a smaller doll inside. Similarly, nested
blocks allow you to place one code block inside another. The outer block controls when the inner
block’s code executes.

Why Nest Blocks?
Sometimes, a simple “If then” or “If then Else” statement is not enough. Nesting allows for more
intricate decision-making within your programme to deal with situations where there are either multi-
step decisions or conditional actions with loops. For example, imagine a robot programmed to follow
a line. It should normally move forward when it detects the line. But if it is anticipated that this is
supposed to be done only for a period of time, say 10 seconds, then the first block (action) should be
nested within the loop, which checks the time. So we first check the time before we move. As long as
we are within time, the robot can keep following the line.

74

SECTION 8: PROGRAMMING ROBOTS

This example is depicted using the following flowchart and block programmes.

Fig. 21.15: Flowchart showing a line following robot which uses nested blocks (multiple decisions)

75

SECTION 8: PROGRAMMING ROBOTS

Fig. 21.16: Block programme showing a line following robot which uses nested blocks

Always remember that the inner block’s code only executes when the outer block’s condition is met.
Think of it as a special permission to run the code inside.

Learning Tasks

Based on the content covered under this thematic area, learners will
1.	 identify the appropriate block type (start/stop, process, decision) based on the flowchart

symbol.
2.	 use various control blocks (if-then, if-then-else, wait until, repeat until) to implement

decisions in their code.
3.	 understand the situations when to use each control block.
4.	 Apply nested blocks to create more complex decision-making logic in their programmes.

76

SECTION 8: PROGRAMMING ROBOTS

Pedagogical Exemplars
The goal of this lesson is for all learners to translate flowchart diagrams into block-based code.
Consider the following keynotes when administering the suggested pedagogical approaches in the
curriculum:

1.	 Recognise and capitalise on the shared characteristics among learners while also addressing
their individual differences, including interests, readiness levels and learning styles.

2.	 Offer multiple pathways for learners to engage with the content. This could involve providing
varying levels of detail, from basic concepts to in-depth explorations, to accommodate different
learning needs. The key thing is that the learning outcomes set for the lesson are achieved
among all learners.

3.	 Talk for Learning: Engage learners in a discussion where they are made to review what they
learnt earlier on flowchart diagrams and their role in programme planning. Proceed further to
showcase how flowchart diagrams are translated into block-based code.
a.	 Using this approach as a starter, through questioning, remind learners by assessing

their understanding of the basic symbols of flowchart diagrams, which were covered in
previous lessons.

b.	 Introduce the idea of translating flowcharts into block-based code.
c.	 Use an interactive presentation tool (e.g. Mentimeter, Pear Deck) to introduce common

flowchart symbols and their corresponding block-based code equivalents (Start/Stop,
Process, Decision).

d.	 Facilitate a class discussion where learners participate by matching symbols to blocks and
explaining their functions.

4.	 Problem-Based Learning: Learners work in mixed-ability groups to translate flowchart
diagrams into block-based code using the LEGO Education Spike App.
a.	 Using this approach, consider creating groups with members having a mix of design, robot

assembly, programming, communication and presentation skills. This fosters collaboration
and uses each learner’s strengths.

b.	 Provide each group with a set of flowcharts with single-decision conditions (e.g. the robot
moves forward until it detects an obstacle). Vary the difficulty of the flowcharts based on
the group’s composition and strengths.

c.	 Learners work together to translate each flowchart into a block-based programme using
LEGO® Education SPIKE™ App.

d.	 Encourage learners to discuss their thought processes and reasoning behind their
block choices.

e.	 Each group tests their programme on an already assembled LEGO SPIKE robot. Advanced
learners can be allowed to assemble their robots on their own as well as make changes to
their robots if need be.

f.	 Facilitate a group discussion to address any errors or unexpected behaviours encountered
during testing.

g.	 Guide learners through debugging their code by identifying logical errors and suggesting
corrections.

h.	 Provide additional support or scaffolding for learners who may struggle with the task.
Provide clarification for learners who may need it. You could describe what the expected
programmes could look like.

i.	 Provide feedback and reinforcement to reinforce learning and encourage continued
engagement.

77

SECTION 8: PROGRAMMING ROBOTS

5.	 Project-Based Learning: Learners work in mixed-ability groups on projects that make use of
nested blocks using the LEGO Education Spike App.
a.	 Using this approach, start by first reviewing the concepts of translating flowcharts with

single-decision conditions into block-based code.
b.	 Introduce the concept of nested-decision conditions in flowcharts and their applications.
c.	 Show a short video demonstrating how to use nested block structures in LEGO® Education

SPIKE™ App (e.g. following a line for a specific duration).
d.	 Pause the video at key points to allow learners to ask questions and clarify any doubts.
e.	 Divide learners into mixed-ability groups. Consider creating groups with members having

a mix of design, robot assembly, programming, communication and presentation skills.
This fosters collaboration and uses each learner’s strengths.

f.	 Provide each group with a flowchart with nested-decision conditions (e.g. a robot follows a
line until it reaches a green object, then stops and plays a sound).

g.	 Groups discuss and analyse the flowchart, identifying the main decision and any nested
decisions within it.

h.	 Encourage learners to explain the logic behind each branch of the flowchart.
i.	 Learners work within their groups to create a block-based programme in the SPIKE™ App

that corresponds to the assigned flowchart.
j.	 Circulate among groups, providing support and guidance as needed.
k.	 Each group shares their completed block-based programme with the class.
l.	 A learner volunteer from each group explains their code structure, focusing on the use of

nested blocks and their functionalities.
m.	 The class provides constructive feedback and asks clarifying questions.

Key Assessment
Assessment Level 1: Learners are presented with a list of flowchart symbols (start, stop, process,
decision) and a list of block types (start block, stop block, action block, control block). They need to
match each symbol with its corresponding block type.

Assessment Level 1: Learners are given a flowchart with a single decision point and asked to identify
the appropriate control block to implement that decision (if-then, if-then-else).

Assessment Level 2: Learners are provided with a simple flowchart with a single decision and asked
to translate it into a block-based programme using a specific app (e.g. LEGO Education SPIKE). They
need to use start/stop blocks, action blocks correctly, and the appropriate control block based on the
decision point.

Assessment Level 3: Learners are provided with a block-based programme and asked to explain the
logic behind the use of specific control blocks (if-then, if-then-else, wait until, repeat until) in the
programme. They need to analyse the programme flow and explain how each block contributes to the
overall decision-making process.

Assessment Level 4: Learners are challenged to design, build and programme a robot using LEGO
Education SPIKE that accomplishes a specific task involving complex decision-making. They need
to utilise nested blocks to create the robot’s behaviour and present their project, explaining the
programme logic and decision-making process.

78

SECTION 8: PROGRAMMING ROBOTS

Conclusion
This lesson taught learners how to translate flowcharts into block-based code for controlling robots.
Learners matched flowchart symbols to block types (start/stop, process, decision) and used control
blocks (if-then, etc.) to implement decisions in their programmes. The lesson also covered nested
blocks for creating more complex decision-making logic.

79

SECTION 8: PROGRAMMING ROBOTS

Week 24
Learning Indicators:

1.	 Create computer programmes from pre-designed flowcharts that have a controlled
feedback loop with loop interrupts.

2.	 Formulate and programme FSMs to control different use cases.

Theme or Focal Area: Fundamentals of Control Principles in Automation and Robotics
- Feedback and Non-Feedback Loop Systems

Introduction
This lesson revisits and expands upon the concepts of finite state machines (FSMs) and controlled
feedback loops, both of which are valuable tools for controlling robot behaviour. Learners will be
reminded of the definitions and functionalities of each system before delving deeper into their key
differences and practical applications in robotics programming.

Reviewing Key Concepts
A finite state machine (FSM) acts as a structured roadmap for a robot’s actions. It defines a set of
distinct states, such as “waiting,” “moving forward,” or “turning,” along with the specific events that
trigger transitions between these states. A simple example is a traffic light controller. It exists in three
distinct states (red, yellow and green) and transitions between them based on a timer (the event).
Remember that FSMs have the following key characteristics:

1.	 Finite Set of States: An FSM operates within a defined set of states. These states represent
different conditions or stages the system can be in at any given time. Examples include “waiting,”
“moving forward,” “turning left” or “off.”

2.	 Transitions: Transitions are well-defined pathways between states. Specific events or conditions
trigger them. For instance, a robot in a “waiting” state might transition to a “moving forward”
state when it detects a button press (the event).

3.	 State-Based Decisions: The actions taken by the FSM depend on the current state and the
triggering event. This means the system’s behaviour is determined by its current state and the
specific event that occurs.

4.	 Deterministic or Non-deterministic: FSMs can be either deterministic or non-deterministic.
In a deterministic FSM, for every state and event, there is only one possible next state, ensuring
predictable behaviour. In a non-deterministic FSM, there can be multiple possible next states for
a given state-event combination, introducing an element of randomness or flexibility.

5.	 Output Generation: While the primary focus of FSMs is on state transitions, they can also
generate outputs in each state. These outputs might involve controlling motors, activating
sensors or displaying information.

6.	 Simplicity and Readability: FSMs offer a clear and concise way to represent complex systems.
By breaking down the system into states and transitions, it is easier to understand the logic and
control flow.

7.	 Modular Design: FSMs can be modular, allowing for the creation of larger systems by combining
smaller FSMs. This promotes code reusability and simplifies complex system design.

In contrast, a controlled feedback loop focuses on continuous monitoring and adjustments. It constantly
checks a specific value (such as temperature or distance) and adjusts the robot’s actions based on that

80

SECTION 8: PROGRAMMING ROBOTS

data. Imagine a line-following robot that uses a colour sensor to stay on the line. It continuously
checks the sensor reading and makes adjustments if it goes off track. Remember that Controlled
feedback loop systems have the following key characteristics:

1.	 Continuous Monitoring: The system constantly tracks its output value. This might involve
using sensors to measure temperature, distance, colour or any relevant parameter.

2.	 Error Detection: The monitored output is compared to a predetermined reference value or
desired outcome. This comparison helps identify any deviations or errors between the actual
and desired states.

3.	 Adjustment and Error Correction: Based on the detected error, the system initiates corrective
actions or adjustments. This ensures the output is brought closer to the desired value. Systems
that can dynamically adjust their behaviour based on feedback are called self-correcting systems.
They continuously learn and adapt to maintain optimal performance.

Key Similarities and Differences:
While both FSMs and controlled feedback loops play a crucial role in robot control, they operate in
slightly different ways:

Feature Finite State Machine (FSM) Controlled Feedback Loop
Structure Defined states and transitions Continuous loop with checks

inside
Decision-
making

Based on the current state and triggering
event

Based on the most recent sensor
reading

Examples Traffic light controller, robot performing a
sequence of tasks

Line follower, temperature
control system

These differences can be summed up as follows:
•	 FSMs operate within a defined set of states and rely on specific events to trigger transitions

between them. The decision on which action to take is based on the current state and the
triggering event.

•	 Controlled feedback loops involve a continuous loop where the robot constantly monitors a
specific value and adjusts its behaviour based on the most recent reading.

Implementation of a Controlled Feedback Loop: Line Following Robot
A line follower equipped with a colour sensor implements a controlled feedback loop. It takes
continuous feedback to determine its motion and direction. The following flowchart diagram and
block-based code depict how it works.

81

SECTION 8: PROGRAMMING ROBOTS

Fig. 24.1: Flowchart showing a line following robot using continuous feedback

Fig. 24.2: Block program showing a line following robot which uses nested blocks

Implementation of a Finite State Machine: Sorting Robot
Now, let us build a robot tasked with sorting coloured balls into different bins. This robot can be
controlled as a finite state machine (FSM) with several states and transitions.

States:
1.	 Waiting: The robot is in its initial position, ready to receive a ball.
2.	 Sense Colour: The robot uses a colour sensor to identify the ball’s colour (e.g. red, blue, yellow).

82

SECTION 8: PROGRAMMING ROBOTS

3.	 Move to Bin: Based on the sensed colour, the robot transitions to the appropriate bin state (e.g.
Move to Red Bin, Move to Blue Bin, Move to Yellow Bin).

4.	 Deposit Ball: The robot positions itself over the designated bin and releases the ball.

Transitions:
•	 From “Waiting” to “Sense Colour”: This transition occurs when a ball is detected by the robot.
•	 From “Sense Colour” to one of the “Move to Bin” states: This transition depends on the colour

identified by the sensor.
•	 From “Move to Bin” to “Deposit Ball”: This occurs when the robot reaches the designated bin.
•	 From “Deposit Ball” to “Waiting”: This transition ensures the robot is ready for the next ball.

Fig. 24.3: FSM for ball sorting robot

This example demonstrates how a finite state machine can effectively control a robot that performs a
sequence of tasks based on sensor data and state transitions.

Usually in programming these FSMs, it is advisable to represent these states as functions or routines.
A function or routine in block-based programming is simply a number of blocks put together and
given a customised name of the user’s choice. These blocks are put together because they implement
a specific task of functionality (function). So whenever that task is to be performed, that function
block is referenced or called by its name using the function reference block. A lot more on functions
will be discussed later. A simple demonstration of a function is shown in Fig. 24.4.

83

SECTION 8: PROGRAMMING ROBOTS

Fig. 24.4 Using functions in block-based programming

Learning Tasks

Based on the content covered under this thematic area, learners will
1.	 distinguish between controlled feedback loop systems and finite state machines.
2.	 create flowchart diagrams for a controlled feedback loop robot
3.	 develop a block-based programme simulating a robot using a controlled feedback loop
4.	 create a FSM diagram for a robot which has to navigate its way out of a rectangular maze
5.	 develop function blocks to represent states for the FSM diagram they created

Pedagogical Exemplars
The goal of this lesson is for all learners to distinguish between controlled feedback loop systems
and finite state machines and represent them with appropriate diagrams and block code. Consider
the following keynotes when administering the suggested pedagogical approaches in the curriculum:

1.	 Stagger the instruction level of difficulty, starting first from a basic level, through intermediate
to an advanced level to cater for the varying needs of learners. You could adopt the
following approach:
a.	 Basic: Provide a simplified explanation of controlled feedback loop and finite state machines,

focusing on core concepts and real-world examples with minimal technical jargon.
b.	 Intermediate: Expand on the basic explanation by introducing the terminology associated

with each system. Include additional real-world examples relevant to the learners’ context
(e.g. automatic temperature control systems, grain sorting machines, etc).

c.	 Advanced: Delve deeper into the technical aspects of feedback and non-feedback loops.
Discuss the detailed characteristics of each system and introduce concepts such as self-
correction in feedback loops and conditions for transitioning in FSMs.

2.	 Ensure that the examples provided at each level are relatable to learners and easy to understand.
This will enable them to readily comprehend why these examples are classified as FSMs or
controlled feedback loop systems.

84

SECTION 8: PROGRAMMING ROBOTS

3.	 Managing Talk for Learning: In a moderated discussion, guide learners to draw out
contrasting differences on these systems, either from personal research findings as well as what
they remember from the previous semester and share them with the class for feedback.
a.	 Using this approach, focus the discussion on drawing out contrasting differences between

the two systems. You may use a Venn diagram and/or a chart to visually represent the
similarities and differences in researched differences between the two systems.

b.	 Encourage all learner groups to share their thoughts based on their carried-out research and
receive constructive feedback. Provide a framework for feedback using phrases such as “I
liked how you explained...” or “One way you could improve your presentation is...”

c.	 Try to find amicable ways of resolving disagreements in opinions among learner groups.
d.	 Summarise all the similarities and differences of these systems and clearly answer any

questions that learners may ask.

4.	 Problem-Based Learning: Learners work in mixed-ability groups to identify the necessary
states for a robot trying to navigate its way out of a rectangular-shaped maze. They then draw
an FSM diagram for this robot, showing the various transitions.
a.	 Using this approach, consider creating groups with members having a mix of programming,

communication and presentation skills. This fosters collaboration and uses each learner’s
strengths.

b.	 Provide each group with a diagram of the maze, showing the entry and exit points and the
labyrinth of paths the robot may have to traverse. Vary the difficulty of the maze based on
the group’s composition and strengths. Some mazes may be simpler than others.

c.	 Explain clearly what the task is and provide them with one or two states which may be
necessary (e.g. Start, turn left, turn right, etc.)

d.	 Learners work together to identify the other necessary states.
e.	 Encourage learners to discuss their thought processes and reasoning behind the states

they identify.
f.	 Each group draws out their FSM, showing clearly the transitions and tests it with the maze

they have been presented with. Encourage learners to implement their states using function
blocks in the LEGO Education Spike App.

g.	 Facilitate a group discussion to address any challenges encountered during testing.
h.	 Provide additional support or scaffolding for learners who may struggle with the task.

Provide clarification to learners who may need it. You could describe what the expected
FSM could look like.

i.	 Provide feedback and reinforcement to reinforce learning and encourage continued
engagement.

5.	 Provide access to diverse resources to cater for the varying preferences of learners. These resources
may include videos, images, articles, podcasts, infographics and other multimedia formats.

6.	 Ensure that all learners have opportunities to access the content in a way that best suits their
learning preferences and abilities.

Key Assessment
Assessment Level 1: State any difference between Finite State Machines and Controlled Feedback
Systems.

Assessment Level 1: State any similarity between Finite State Machines and Controlled Feedback
Systems.

85

SECTION 8: PROGRAMMING ROBOTS

Assessment Level 2: Categorise the following robot descriptions as either Finite State Machines or
Controlled Feedback Systems

1.	 A robot that delivers packages to different drop points.
2.	 A traffic light controller that cycles through red, yellow and green states.
3.	 A line-following robot that adjusts its direction based on sensor readings.

Assessment Level 3: Using a simplified rectangular maze with clear entry and exit points, create an
FSM diagram for a robot to navigate its way out.

Assessment Level 4: Research and analyse a specific real-world application that utilises a combination
of controlled feedback loops and FSMs.

Conclusion
We have explored two powerful tools for robot control: FSMs and controlled feedback loops. We
learned about their functionalities, key characteristics and how they differ. By understanding these
concepts, learners can effectively design robots that perform complex tasks using sensors and state-
based control.

Section 8 Review
In this four-week section, we introduced learners to programming concepts and differentiated
between text-based and block-based coding. After being introduced to block-based programming
using video tutorials, learners have familiarised themselves with using the LEGO Education Spike
App to programme their assembled robots. Learners also learnt how to translate flowcharts into
block-based programmes. Finally, learners were exposed to the differences between FSMs and
controlled feedback loop systems and how to represent them using state diagrams, flowcharts
and block-based programmes.

Additional Reading

Reference Link QR Code

Block Coding – An A To Z Guide
https://www.codingal.com/coding-for-kids/coding-guides/block-
coding-guide/

Block-Based Vs Text-Based Coding For Kids
https://moonpreneur.com/blog/block-based-vs-text-based-
coding/

Getting started with LEGO® Education SPIKE™ Prime
https://education.lego.com/en-us/start/spike-prime/#Introduction

https://www.codingal.com/coding-for-kids/coding-guides/block-coding-guide/
https://www.codingal.com/coding-for-kids/coding-guides/block-coding-guide/
https://moonpreneur.com/blog/block-based-vs-text-based-coding/
https://moonpreneur.com/blog/block-based-vs-text-based-coding/

86

SECTION 8: PROGRAMMING ROBOTS

Reference Link QR Code
Spike Prime - Tips and Tricks

https://www.youtube.com/playlist?list=PLxFeBwC-gJMSV_
EILSS1K6k1dXSYudln9

Finite State Machines
https://www.youtube.com/watch?v=4XEK7OU2gIw&pp=y-

gUdZHJhd2luZyBmaW5pdGUgc3RhdGUgZGlhZ3JhbXM%3D

References

Reference Link QR Code
SPIKE Prime Tutorials

https://www.youtube.com/playlist?list=PL_
zXBalpjbu33gw5CML3DtL7fN8640qku

Lego Spike Prime
https://www.youtube.com/

playlist?list=PLS9qLR8VoFA62KcAzsUfAOQgLrEXCp78B

https://www.youtube.com/playlist?list=PLxFeBwC-gJMSV_EILSS1K6k1dXSYudln9
https://www.youtube.com/playlist?list=PLxFeBwC-gJMSV_EILSS1K6k1dXSYudln9
https://www.youtube.com/watch?v=4XEK7OU2gIw&pp=ygUdZHJhd2luZyBmaW5pdGUgc3RhdGUgZGlhZ3JhbXM%3D
https://www.youtube.com/watch?v=4XEK7OU2gIw&pp=ygUdZHJhd2luZyBmaW5pdGUgc3RhdGUgZGlhZ3JhbXM%3D
https://www.youtube.com/playlist?list=PL_zXBalpjbu33gw5CML3DtL7fN8640qku
https://www.youtube.com/playlist?list=PL_zXBalpjbu33gw5CML3DtL7fN8640qku
https://www.youtube.com/playlist?list=PLS9qLR8VoFA62KcAzsUfAOQgLrEXCp78B
https://www.youtube.com/playlist?list=PLS9qLR8VoFA62KcAzsUfAOQgLrEXCp78B

87

Acknowledgements

ACKNOWLEDGEMENTS

Special thanks to Professor Edward Appiah, Director-General of the National Council for Curriculum
and Assessment (NaCCA) and all who contributed to the successful writing of the Teacher Manuals for
the new Senior High School (SHS), Senior High Technical School (SHTS) and Science Technology,
Engineering and Mathematics (STEM) curriculum.

The writing team was made up of the following members:

NaCCA Team

Name of Staff Designation

Matthew Owusu Deputy Director-General, Technical Services

Reginald Quartey Ag. Director, Curriculum Development Directorate

Anita Cordei Collison Ag. Director, Standards, Assessment and Quality Assurance
Directorate

Rebecca Abu Gariba Ag. Director, Corporate Affairs

Anthony Sarpong Director, Standards, Assessment and Quality Assurance
Directorate

Uriah Kofi Otoo Senior Curriculum Development Officer (Art and Design
Foundation & Studio)

Nii Boye Tagoe Senior Curriculum Development Officer (History)

Juliet Owusu-Ansah Senior Curriculum Development Officer (Social Studies)

Eric Amoah Senior Curriculum Development Officer (General Science)

Ayuuba Sullivan Akudago Senior Curriculum Development Officer (Physical Education
& Health)

Godfred Asiedu Mireku Senior Curriculum Development Officer (Mathematics)

Samuel Owusu Ansah Senior Curriculum Development Officer (Mathematics)

Thomas Kumah Osei Senior Curriculum Development Officer (English)

Godwin Mawunyo Kofi Senanu Assistant Curriculum Development Officer (Economics)

Joachim Kwame Honu Principal Standards, Assessment and Quality Assurance
Officer

Jephtar Adu Mensah Senior Standards, Assessment and Quality Assurance Officer

Richard Teye Senior Standards, Assessment and Quality Assurance Officer

Nancy Asieduwaa Gyapong Assistant Standards, Assessment and Quality Assurance
Officer

Francis Agbalenyo Senior Research, Planning, Monitoring and Evaluation
Officer

Abigail Birago Owusu Senior Research, Planning, Monitoring and Evaluation
Officer

88

Acknowledgements

NaCCA Team

Name of Staff Designation

Ebenezer Nkuah Ankamah Senior Research, Planning, Monitoring and Evaluation
Officer

Joseph Barwuah Senior Instructional Resource Officer

Sharon Antwi-Baah Assistant Instructional Resource Officer

Dennis Adjasi Instructional Resource Officer

Samuel Amankwa Ogyampo Corporate Affairs Officer

Seth Nii Nartey Corporate Affairs Officer

Alice Abbew Donkor National Service Person

Subject Writer Designation/Institution
Home
Economics

Grace Annagmeng Mwini Tumu College of Education
Imoro Miftaw Gambaga Girls’ SHS
Jusinta Kwakyewaa (Rev. Sr.) St. Francis SHTS

Religious
Studies

Dr. Richardson Addai-
Mununkum

University of Education Winneba

Dr. Francis Opoku Valley View University College
Aransa Bawa Abdul Razak Uthmaniya SHS
Godfred Bonsu Prempeh College

RME Anthony Mensah Abetifi College of Education
Joseph Bless Darkwa Volo Community SHS
Clement Nsorwineh Atigah Tamale SHS

Arabic Dr. Murtada Mahmoud Muaz AAMUSTED
Dr. Abas Umar Mohammed University of Ghana
Mahey Ibrahim Mohammed Tijjaniya Senior High School

French Osmanu Ibrahim Mount Mary College of Education
Mawufemor Kwame Agorgli Akim Asafo SHS

Performing Arts Dr. Latipher Osei Appiah-Agyei University of Education Winneba
Desmond Ali Gasanga Ghana Education Service
Chris Ampomah Mensah Bolgatanga SHS, Winkogo

89

Acknowledgements

Subject Writer Designation/Institution
Art and Design
Studio and
Foundation

Dr. Ebenezer Acquah University for Education Winneba
Seyram Kojo Adipah Ghana Education Service
Dr. Jectey Nyarko Mantey Kwame Nkrumah University of Science

and Technology
Yaw Boateng Ampadu Prempeh College
Kwame Opoku Bonsu Kwame Nkrumah University of Science

and Technology
Dzorka Etonam Justice Kpando Senior High Sschool

Applied
Technology

Dr. Sherry Kwabla Amedorme AAMUSTED
Dr. Prosper Mensah AAMUSTED
Esther Pokuah Mampong Technical College of

Education
Wisdom Dzidzienyo Adzraku AAMUSTED
Kunkyuuri Philip Kumasi SHTS
Antwi Samuel Kibi Senior High School
Josiah Bawagigah Kandwe Walewale Technical Institute
Emmanuel Korletey Benso Senior High Technical School
Isaac Buckman Armed Forces Senior High Technical

School
Tetteh Moses Dagbon State Senior High School
Awane Adongo Martin Dabokpa Technical Institute

Design and
Communication
Technology

Gabriel Boafo Kwabeng Anglican SHTS
Henry Agmor Mensah KASS
Joseph Asomani AAMUSTED
Kwame Opoku Bonsu Kwame Nkrumah University of Science

and Technology
Dr. Jectey Nyarko Mantey Kwame Nkrumah University of Science

and Technology
Dr. Ebenezer Acquah University for Education Winneba

Business Studies Emmanuel Kodwo Arthur ICAG
Dr. Emmanuel Caesar Ayamba Bolgatanga Technical University
Ansbert Baba Avole Bolgatanga Senior High School,

Winkogo
Faustina Graham Ghana Education Service, HQ
Nimako Victoria SDA Senior High School, Akyem

Sekyere

90

Acknowledgements

Subject Writer Designation/Institution
Agriculture Dr. Esther Fobi Donkoh University of Energy and Natural

Resources
Prof. Frederick Adzitey University for Development Studies
Eric Morgan Asante St. Peter’s Senior High School

Agricultural
Science

David Esela Zigah Achimota School
Prof. J.V.K. Afun Kwame Nkrumah University of Science

and Technology
Mrs. Benedicta Carbiliba Foli Retired, Koforidua Senior High

Technical School
Government Josephine Akosua Gbagbo Ngleshie Amanfro SHS

Augustine Arko Blay University of Education Winneba
Samuel Kofi Adu Fettehman Senior High School

Economics Dr. Peter Anti Partey University of Cape Coast
Charlotte Kpogli Ho Technical University
Benjamin Agyekum Mangoase Senior High School

Geography Raymond Nsiah Asare Methodist Girls’ High School
Prof. Ebenezer Owusu Sekyere University for Development Studies
Samuel Sakyi Addo Achimota School

History Kofi Adjei Akrasi Opoku Ware School
Dr. Anitha Oforiwah Adu-
Boahen

University of Education Winneba

Prince Essiaw Enchi College of Education
Ghanaian
Language

David Sarpei Nunoo University of Education Winneba,
Ajumako

Catherine Ekua Mensah University of Cape Coast
Ebenezer Agyemang Opoku Ware School

Physical
Education and
Health

Paul Dadzie Accra Academy
Sekor Gaveh Kwabeng Anglican Senior High

Technical School
Anthonia Afosah Kwaaso Junkwa Senior High School
Mary Aku Ogum University of Cape Coast

Social Studies Mohammed Adam University of Education Winneba
Simon Tengan Wa Senior High Technical School
Jemima Ayensu Holy Child School

91

Acknowledgements

Subject Writer Designation/Institution
Computing and
Information
Communication
Technology
(ICT)

Victor King Anyanful OLA College of Education
Raphael Dordoe Senyo Ziavi Senior High Technical School
Kwasi Abankwa Anokye Ghana Education Service, SEU
Millicent Heduvor STEM Senior High School, Awaso
Dr. Ephriam Kwaa Aidoo University for Education Winneba
Dr. Gaddafi Abdul-Salaam Kwame Nkrumah University of Science

and Technology
English
Language

Esther O. Armah Mangoase Senior High School
Kukua Andoh Robertson Achimota School
Alfred Quaittoo Kaneshie Senior High Technical School
Benjamin Orrison Akrono Islamic Girls’ Senior High School
Fuseini Hamza Tamale Girls’ Senior High School

Intervention
English

Roberta Emma Amos-Abanyie Ingit Education Consult
Perfect Quarshie Mawuko Girls Senior High School
Sampson Dedey Baidoo Benso Senior High Technical School

Literature-in-
English

Blessington Dzah Ziavi Senior High Technical School
Angela Aninakwah West African Senior High School
Juliana Akomea Mangoase Senior High School

General Science Dr. Comfort Korkor Sam University for Development Studies
Saddik Mohammed Ghana Education Service
Robert Arhin SDA SHS, Akyem Sekyere

Chemistry Ambrose Ayikue St. Francis College of Education
Awumbire Patrick Nsobila Bolgatanga SHS, Winkogo
Bismark Tunu Opoku Ware School
Gbeddy Nereus Anthony Ghanata Senior High School

Physics Dr. Linus Labik Kwame Nkrumah University of Science
and Technology

Henry Benyah Wesley Girls High School
Sylvester Affram Kwabeng Anglican SHS

Biology Paul Beeton Damoah Prempeh College
Maxwell Bunu Ada College of Education
Ebenezer Delali Kpelly Wesley Girls’ SHS
Doris Osei-Antwi Ghana National College

Mathematics Edward Dadson Mills University of Education Winneba
Zacharia Abubakari Sadiq Tamale College of Education
Collins Kofi Annan Mando SHS

92

Acknowledgements

Subject Writer Designation/Institution
Additional
Mathematics

Dr. Nana Akosua Owusu-Ansah University of Education Winneba
Gershon Mantey University of Education Winneba
Innocent Duncan KNUST SHS

Intervention
Mathematics

Florence Yeboah Assin Manso SHS
Mawufemor Adukpo Ghanata SHS
Jemima Saah Winneba SHS

Robotics Dr. Eliel Keelson Kwame Nkrumah University of Science
and Technology

Dr. Nii Longdon Sowah University of Ghana
Isaac Nzoley Wesley Girls High School

Engineering Daniel K. Agbogbo Kwabeng Anglican SHTS
Prof. Abdul-Rahman Ahmed Kwame Nkrumah University of Science

and Technology
Valentina Osei-Himah Atebubu College of Education

Aviation and
Aerospace
Engineering

Opoku Joel Mintah Altair Unmanned Technologies

Sam Ferdinand Afua Kobi Ampem Girls’ SHS

Biomedical
Science

Dr. Dorothy Yakoba Agyapong Kwame Nkrumah University of Science
and Technology

Jennifer Fafa Adzraku Université Libre de Bruxelles
Dr. Eric Worlawoe Gaba Br. Tarcisius Prosthetics and Orthotics

Training College
Manufacturing
Engineering

Benjamin Atribawuni Asaaga Kwame Nkrumah University of Science
and Technology

Dr. Samuel Boahene Kwame Nkrumah University of Science
and Technology

Prof Charles Oppon Cape Coast Technical University
Spanish Setor Donne Novieto University of Ghana

Franklina Kabio Danlebo University of Ghana
Mishael Annoh Acheampong University of Media, Art and

Communication
Assessment Benjamin Sundeme St. Ambrose College of Education

Dr. Isaac Amoako Atebubu College of Education
Curriculum
Writing Guide
Technical Team

Paul Michael Cudjoe Prempeh College
Evans Odei Achimota School

	_heading=h.odwgx79p8e3t
	_heading=h.u65jhg5njj3m
	_heading=h.1fob9te
	_heading=h.3znysh7
	Introduction
	Learner-Centred Curriculum
	Promoting Ghanaian Values
	Integrating 21st Century Skills and Competencies
	Balanced Approach to Assessment - not just Final External Examinations
	An Inclusive and Responsive Curriculum
	Social and Emotional Learning
	Philosophy and vision for each subject

	Summary Scope and Sequence
	SECTION 5: ROBOT DESIGN SOFTWARE
	Strand: Robot Design Methodologies
	Sub-Strand: Tools and Applications for Robot Design
	Theme or Focal Area: Exploring Tools & Apps for Robot Design: Modelling, Programming and Simulation
	Theme or Focal Area: Virtual Robot Design and Simulation: Exploring Mechanics and Testing
	Theme or Focal Area: 3D Printing and CAD Modelling for Robotic Systems
	Theme or Focal Area: 3D Printing with G-Codes: From CAD Modelling to Physical Prototypes

	SECTION 6: ROBOT CONSTRUCTION AND PROGRAMMING
	Strand: Robot Construction & Programming
	Sub-Strand: Higher Order Design Thinking
	Theme or Focal Area: Higher order Design Thinking: Flowchart Diagrams for Algorithm Implementation
	Theme or Focal Area: Algorithmic Problem-Solving in Robotics: Pseudocodes and Flowchart Diagrams

	SECTION 7: ROBOT CONSTRUCTION
	Strand: Robot Construction & Programming
	Sub-Strand: Robot Construction
	Theme or Focal Area: Robot Construction - Designing Stable Structures and Understanding Mass and Centre of Gravity
	Theme or Focal Area: Building and Testing Robot Structures: Ensuring Stability and Force Resistance
	Theme or Focal Area: Creating Robots with Basic Mechanics - Exploring Gears, Vehicles and Moving Mechanisms

	SECTION 8: PROGRAMMING ROBOTS
	Strand: Robot Construction & Programming
	Sub-Strand: Programming Robots
	Theme or Focal Area: Introduction to Programming with Block-Based Coding
	Theme or Focal Area: Creating Computer Programmes From Flowcharts
	Theme or Focal Area: Fundamentals of Control Principles in Automation and Robotics - Feedback and Non-Feedback Loop Systems

	Acknowledgements

	Home bottom 4:
	Page 3:
	Page 5:
	Page 7:
	Page 9:
	Page 11:
	Page 13:
	Page 15:
	Page 17:
	Page 19:
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 29:
	Page 31:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 51:
	Page 53:
	Page 55:
	Page 57:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 69:
	Page 71:
	Page 73:
	Page 75:
	Page 77:
	Page 79:
	Page 81:
	Page 83:
	Page 85:
	Page 87:
	Page 89:
	Page 91:
	Page 93:
	Page 95:

	forward botton 4:
	Page 3:
	Page 5:
	Page 7:
	Page 9:
	Page 11:
	Page 13:
	Page 15:
	Page 17:
	Page 19:
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 29:
	Page 31:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 51:
	Page 53:
	Page 55:
	Page 57:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 69:
	Page 71:
	Page 73:
	Page 75:
	Page 77:
	Page 79:
	Page 81:
	Page 83:
	Page 85:
	Page 87:
	Page 89:
	Page 91:
	Page 93:
	Page 95:

	back botton 4:
	Page 3:
	Page 5:
	Page 7:
	Page 9:
	Page 11:
	Page 13:
	Page 15:
	Page 17:
	Page 19:
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 29:
	Page 31:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 51:
	Page 53:
	Page 55:
	Page 57:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 69:
	Page 71:
	Page 73:
	Page 75:
	Page 77:
	Page 79:
	Page 81:
	Page 83:
	Page 85:
	Page 87:
	Page 89:
	Page 91:
	Page 93:
	Page 95:

	Home bottom 3:
	Page 4:
	Page 6:
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:
	Page 78:
	Page 80:
	Page 82:
	Page 84:
	Page 86:
	Page 88:
	Page 90:
	Page 92:
	Page 94:
	Page 96:

	forward botton 3:
	Page 4:
	Page 6:
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:
	Page 78:
	Page 80:
	Page 82:
	Page 84:
	Page 86:
	Page 88:
	Page 90:
	Page 92:
	Page 94:
	Page 96:

	back botton 3:
	Page 4:
	Page 6:
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:
	Page 78:
	Page 80:
	Page 82:
	Page 84:
	Page 86:
	Page 88:
	Page 90:
	Page 92:
	Page 94:
	Page 96:

